这个是取自于《python机器学习基础教程》16页

代码:

# import numpy as np 
# import matplotlib.pyplot as plt
# import pandas as pd
# import mglearn # from sklearn.datasets import load_iris
# from sklearn.model_selection import train_test_split
# iris_dataset = load_iris()
# X_train,X_test,y_train,y_test = train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
# # 利用X_train中的数据创建DataFrame
# # # 利用iris_dataset.feature_names中的字符串对数据列进行标记
# iris_dataframe = pd.DataFrame(X_train,columns=iris_dataset.feature_names) # grr = pd.plotting.scatter_matrix(iris_dataframe,c=y_train,figsize=(15,15),marker='o',hist_kwds={'bins':20},s=60,alpha=8,cmap=mglearn.cm3) # grr.show() import mglearn
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
iris_dataset = load_iris()
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0)
iris_dataframe=pd.DataFrame(X_train,columns=iris_dataset.feature_names)
grr = pd.plotting.scatter_matrix(iris_dataframe,marker='o',c = y_train,hist_kwds={'bins':20},cmap=mglearn.cm3) plt.show()

效果:

我们来看scatter_matrix的参数

def scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, diagonal='hist', marker='.', density_kwds=None,hist_kwds=None, range_padding=0.05, **kwds)

frame:pandas dataframe对象

alpha:(float, 可选), 图像透明度,一般取(0,1]

figsize: ((float,float), 可选),以英寸为单位的图像大小,一般以元组 (width, height) 形式设置
ax:(Matplotlib axis object, 可选),一般取None
diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个,’hist’表示直方图(Histogram plot),’kde’表示核密度估计(Kernel Density Estimation);该参数是scatter_matrix函数的关键参数,下文将做进一步介绍
marker:(str, 可选), Matplotlib可用的标记类型,如’.’,’,’,’o’等
density_kwds:(other plotting keyword arguments,可选),与kde相关的字典参数
hist_kwds:(other plotting keyword arguments,可选),与hist相关的字典参数
range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点
kwds:(other plotting keyword arguments,可选),与scatter_matrix函数本身相关的字典参数

参考来自:https://blog.csdn.net/hurry0808/article/details/78573585

mglearn初探的更多相关文章

  1. 初探领域驱动设计(2)Repository在DDD中的应用

    概述 上一篇我们算是粗略的介绍了一下DDD,我们提到了实体.值类型和领域服务,也稍微讲到了DDD中的分层结构.但这只能算是一个很简单的介绍,并且我们在上篇的末尾还留下了一些问题,其中大家讨论比较多的, ...

  2. CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探

    CSharpGL(8)使用3D纹理渲染体数据 (Volume Rendering) 初探 2016-08-13 由于CSharpGL一直在更新,现在这个教程已经不适用最新的代码了.CSharpGL源码 ...

  3. 从273二手车的M站点初探js模块化编程

    前言 这几天在看273M站点时被他们的页面交互方式所吸引,他们的首页是采用三次加载+分页的方式.也就说分为大分页和小分页两种交互.大分页就是通过分页按钮来操作,小分页是通过下拉(向下滑动)时异步加载数 ...

  4. JavaScript学习(一) —— 环境搭建与JavaScript初探

    1.开发环境搭建 本系列教程的开发工具,我们采用HBuilder. 可以去网上下载最新的版本,然后解压一下就能直接用了.学习JavaScript,环境搭建是非常简单的,或者说,只要你有一个浏览器,一个 ...

  5. .NET文件并发与RabbitMQ(初探RabbitMQ)

    本文版权归博客园和作者吴双本人共同所有.欢迎转载,转载和爬虫请注明原文地址:http://www.cnblogs.com/tdws/p/5860668.html 想必MQ这两个字母对于各位前辈们和老司 ...

  6. React Native初探

    前言 很久之前就想研究React Native了,但是一直没有落地的机会,我一直认为一个技术要有落地的场景才有研究的意义,刚好最近迎来了新的APP,在可控的范围内,我们可以在上面做任何想做的事情. P ...

  7. 【手把手教你全文检索】Apache Lucene初探

    PS: 苦学一周全文检索,由原来的搜索小白,到初次涉猎,感觉每门技术都博大精深,其中精髓亦是不可一日而语.那小博猪就简单介绍一下这一周的学习历程,仅供各位程序猿们参考,这其中不涉及任何私密话题,因此也 ...

  8. Key/Value之王Memcached初探:三、Memcached解决Session的分布式存储场景的应用

    一.高可用的Session服务器场景简介 1.1 应用服务器的无状态特性 应用层服务器(这里一般指Web服务器)处理网站应用的业务逻辑,应用的一个最显著的特点是:应用的无状态性. PS:提到无状态特性 ...

  9. NoSQL初探之人人都爱Redis:(3)使用Redis作为消息队列服务场景应用案例

    一.消息队列场景简介 “消息”是在两台计算机间传送的数据单位.消息可以非常简单,例如只包含文本字符串:也可以更复杂,可能包含嵌入对象.消息被发送到队列中,“消息队列”是在消息的传输过程中保存消息的容器 ...

随机推荐

  1. 小白学Python(12)——pyecharts ,生成词云图 WordCloud

    WordCloud(词云图) from pyecharts import options as opts from pyecharts.charts import Page, WordCloud fr ...

  2. 什么是 Python 自省?

    Python 自省是 Python 具有的一种能力,使程序员面向对象的语言所写的程序在运行时,能够获得对象的类 Python 型.Python 是一种解释型语言,为程序员提供了极大的灵活性和控制力.

  3. nodejs回调大坑

    最近看到nodejs,因为有一个处理里面有好几个异步操作,调入回调大坑,不禁觉得很恶心,真的很讨厌发明这种写法的人,简直反社会!!!遂转载一篇解坑的文章,原文地址:http://www.infoq.c ...

  4. vue中搜索关键词,使文本标红

    UserHead.vue中搜索框: <!-- 搜索 --> <el-col :span="6" :offset="8" class=" ...

  5. ffmpeg的中文文档

    1. 概要 ffmpeg [global_options] {[input_file_options] -i INPUT_FILE} ... {[output_file_options] OUTPUT ...

  6. Docker实战部署应用——MySQL5.7

    MySQL 部署 拉取MySQL镜像 拉取命令: docker pull mysql:5.7 查看镜像 docker images 创建 MySQL 容器 docker run -id --name= ...

  7. Sql Server 出现此数据库没有有效所有者问题

    在新建数据库或附加数据库后,想添加关系表,结果出现下面的错误:  此数据库没有有效所有者,因此无法安装数据库关系图支持对象.若要继续,请首先使用“数据库属性”对话框的“文件”页或ALTER AUTHO ...

  8. python时间测量

    使用自定义装饰器测量时间 def test_time(func): def inner(*args, **kw): t1 = datetime.datetime.now() print('开始时间:' ...

  9. 发布程序包到Nuget

    今天想着别人都把自己做的程序包发布到nuget上去开放给别人使用,那么我是否也能这么干呢,于是就研究了一番,发现还真可以,而且非常简单,接下来就介绍下发布自己的程序包到nuget上的方法. 一.创建公 ...

  10. eclipse没有Web项目和Server选项

    (1)在Eclipse中菜单help选项中选择install new software选项 (2)在work with 栏中输入 http://download.eclipse.org/release ...