题目链接

(bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=2669

(luogu) https://www.luogu.org/problem/P3160

题解

这道题充分暴露了我的菜。。

显然两个局部极小值点不能相邻,所以最多有\(8\)个局部极小值。

然后考虑容斥掉.不能成为局部极小值的限制,那么就变成钦定某些位置一定是局部极小值,其余不限,求方案数。

然后这个可以状压DP,考虑从小到大加入每个数,然后就很好求了。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<vector>
using namespace std; const int P = 12345678;
const int dx[8] = {1,0,-1,0,1,1,-1,-1},dy[8] = {0,1,0,-1,1,-1,-1,1};
vector<int> kx,ky;
int bitcnt[(1<<8)+3];
char a[7][11];
char b[7][11];
int num[(1<<8)+3];
int dp[31][(1<<8)+3];
int n,m,cnt,ans; bool check(int x,int y,int typ)
{
bool ret = true;
for(int i=0; i<8; i++)
{
int xx = x+dx[i],yy = y+dy[i];
if(xx>0&&xx<=n&&yy>0&&yy<=m)
{
if(typ==0) {if(a[xx][yy]=='X') {return false;}}
if(typ==1) {if(b[xx][yy]=='X') {return false;}}
}
}
return true;
} int calc()
{
kx.clear(); ky.clear();
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
{
if(a[i][j]=='X') {kx.push_back(i); ky.push_back(j);}
}
}
for(int i=0; i<(1<<kx.size()); i++)
{
for(int j=0; j<kx.size(); j++)
{
if(!(i&(1<<j))) {b[kx[j]][ky[j]] = 'X';}
}
num[i] = 0;
for(int j=1; j<=n; j++)
{
for(int k=1; k<=m; k++)
{
bool ok = check(j,k,1);
if((ok && a[j][k]!='X')) num[i]++;
}
}
num[i] += bitcnt[i];
for(int j=0; j<kx.size(); j++) {b[kx[j]][ky[j]] = '.';}
}
dp[0][0] = 1;
for(int i=0; i<n*m; i++)
{
for(int j=0; j<(1<<kx.size()); j++)
{
if(dp[i][j])
{
dp[i+1][j] = (dp[i+1][j]+dp[i][j]*(num[j]-i))%P;
for(int k=0; k<kx.size(); k++)
{
if(!(j&(1<<k)))
{
dp[i+1][j|(1<<k)] = (dp[i+1][j|(1<<k)]+dp[i][j])%P;
}
}
}
}
}
int ret = dp[n*m][(1<<kx.size())-1];
for(int i=0; i<=n*m; i++) for(int j=0; j<(1<<kx.size()); j++) dp[i][j] = 0;
return ret;
} void dfs(int x,int y,int dep)
{
if(x==n+1)
{
int tmp = calc();
if((dep-cnt)&1) {ans = ans-tmp<0 ? ans-tmp+P : ans-tmp;}
else {ans = ans+tmp>=P ? ans+tmp-P : ans+tmp;}
return;
}
int xx = x,yy = y+1; if(yy>m) {yy = 1; xx++;}
if(a[x][y]=='X')
{
bool f = check(x,y,0);
if(f) {dfs(xx,yy,dep+1);}
}
else
{
a[x][y] = 'X';
bool f = check(x,y,0);
if(f) {dfs(xx,yy,dep+1);}
a[x][y] = '.';
dfs(xx,yy,dep);
}
} int main()
{
for(int i=1; i<(1<<8); i++) bitcnt[i] = bitcnt[i>>1]+(i&1);
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++) for(int j=1; j<=m; j++) b[i][j] = '.';
for(int i=1; i<=n; i++) scanf("%s",a[i]+1);
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++) {if(a[i][j]=='X') cnt++;}
}
if(cnt>8) {printf("0"); return 0;}
dfs(1,1,0);
printf("%d\n",ans);
return 0;
}

BZOJ 2669 Luogu P3160 [CQOI2012]局部极小值 (容斥原理、DP)的更多相关文章

  1. P3160 [CQOI2012]局部极小值 题解(状压DP+容斥)

    题目链接 P3160 [CQOI2012]局部极小值 双倍经验,双倍快乐 解题思路 存下来每个坑(极小值点)的位置,以这个序号进行状态压缩. 显然,\(4*7\)的数据范围让极小值点在8个以内(以下示 ...

  2. P3160 [CQOI2012]局部极小值

    题目 P3160 [CQOI2012]局部极小值 一眼就是状压,接下来就不知道了\(qwq\) 做法 我们能手玩出局部小值最多差不多是\(8,9\)个的样子,\(dp_{i,j}\)为填满\(1~i\ ...

  3. 【bzoj2669】[cqoi2012]局部极小值 容斥原理+状压dp

    题目描述 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任 ...

  4. [BZOJ2669][CQOI2012]局部极小值:DP+容斥原理

    分析 题目要求有且只有一些位置是局部极小值.有的限制很好处理,但是只有嘛,嗯...... 考虑子集反演(话说这个其实已经算是超集反演了吧还叫子集反演是不是有点不太合适),枚举题目给出位置集合的所有超集 ...

  5. BZOJ 4042 Luogu P4757 [CERC2014]Parades (树形DP、状压DP)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4042 (Luogu) https://www.luogu.org/prob ...

  6. BZOJ 4417 Luogu P3990 [SHOI2013]超级跳马 (DP、矩阵乘法)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=4417 (luogu)https://www.luogu.org/prob ...

  7. BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)

    题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...

  8. bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】

    当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...

  9. BZOJ 3162 / Luogu P4895: 独钓寒江雪 树hash+DP

    题意 给出一棵无根树,求本质不同的独立集数模100000000710000000071000000007的值. n≤500000n\le 500000n≤500000 题解 如果是有根树就好做多了.然 ...

随机推荐

  1. Vue的快速入门

    1 环境准备 1 下载安装Node 地址https://nodejs.org/en/download/ 完成后通过cmd打开控制台输入node -v 可以看到版本信息 2 通过该node自带的npm ...

  2. java web 二维码生成

    pom支持: <!-- 二维码支持包 start--> <dependency> <groupId>com.google.zxing</groupId> ...

  3. Codeforces 1190B. Tokitsukaze, CSL and Stone Game

    传送门 不妨把每一堆按照石头数量从小到大排序 注意到每次只能拿一个石头,那么不论何时每堆石头的排名都是一样的 那么最终所有堆的状态一定就是 $0,1,2,...,n-1$,现在每一堆最终的石头数量都确 ...

  4. maven项目转换为gradle项目

    进入到项目更目录,运行 gradle init --type pom 上面的命令会根据pom文件自动生成gradle项目所需的文件和配置,然后以gradle项目重新导入即可.

  5. python 字符串前面加r,u的含义

    u/U:表示unicode字符串 不是仅仅是针对中文, 可以针对任何的字符串,代表是对字符串进行unicode编码. 一般英文字符在使用各种编码下, 基本都可以正常解析, 所以一般不带u:但是中文, ...

  6. 07-django项目连接远程mysql数据库

    比如电脑a(ip地址为192.168.0.aaa)想要连接访问电脑b(ip地址为192.168.0.bbb)的数据库: 对电脑a(ip地址为192.168.0.aaa): 在项目settings.py ...

  7. 梳理common-io工具包

    title: 梳理common-io工具包 comments: false date: 2019-08-28 14:21:58 description: 对common-io工具包中的常用类进行整理, ...

  8. struts.xml中package标签的子标签及顺序

    记录一下:

  9. 安全专家发现GE Multilin SR的一个关键漏洞对全球电网构成严重威胁。

    A team of researchers from New York University has found a serious vulnerability in some of GE Multi ...

  10. git用ssh方式下载和提交代码

    之前git上传下载代码都是用的http方式,但是今天遇到个大文件上传的时候,http方式上传超出大小限制了413 request entity too large,所以改成了用ssh方式上传,简单记录 ...