Sequential 模型 API

在阅读这片文档前,请先阅读 Keras Sequential 模型指引


Sequential 模型方法

compile

compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None)

用于配置训练模型。

参数

  • optimizer: 字符串(优化器名)或者优化器对象。详见 optimizers
  • loss: 字符串(目标函数名)或目标函数。详见 losses。 如果模型具有多个输出,则可以通过传递损失函数的字典或列表,在每个输出上使用不同的损失。模型将最小化的损失值将是所有单个损失的总和。
  • metrics: 在训练和测试期间的模型评估标准。通常你会使用 metrics = ['accuracy']。 要为多输出模型的不同输出指定不同的评估标准,还可以传递一个字典,如 metrics = {'output_a':'accuracy'}
  • loss_weights: 指定标量系数(Python浮点数)的可选列表或字典,用于加权不同模型输出的损失贡献。 模型将要最小化的损失值将是所有单个损失的加权和,由 loss_weights 系数加权。 如果是列表,则期望与模型的输出具有 1:1 映射。 如果是张量,则期望将输出名称(字符串)映射到标量系数。
  • sample_weight_mode: 如果你需要执行按时间步采样权重(2D 权重),请将其设置为 temporal。 默认为 None,为采样权重(1D)。如果模型有多个输出,则可以通过传递 mode 的字典或列表,以在每个输出上使用不同的 sample_weight_mode
  • weighted_metrics: 在训练和测试期间,由 sample_weight 或 class_weight 评估和加权的度量标准列表。
  • target_tensors: 默认情况下,Keras 将为模型的目标创建一个占位符,在训练过程中将使用目标数据。相反,如果你想使用自己的目标张量(反过来说,Keras 在训练期间不会载入这些目标张量的外部 Numpy 数据),您可以通过 target_tensors 参数指定它们。它应该是单个张量(对于单输出 Sequential 模型)。
  • **kwargs: 当使用 Theano/CNTK 后端时,这些参数被传入 K.function。当使用 TensorFlow 后端时,这些参数被传递到 tf.Session.run

异常

  • ValueError: 如果 optimizerlossmetrics 或 sample_weight_mode 这些参数不合法。

fit

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)

以固定数量的轮次(数据集上的迭代)训练模型。

参数

  • x: 训练数据的 Numpy 数组。 如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是 None(默认)。
  • y: 目标(标签)数据的 Numpy 数组。 如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是 None(默认)。
  • batch_size: 整数或 None。每次提度更新的样本数。如果未指定,默认为 32.
  • epochs: 整数。训练模型迭代轮次。一个轮次是在整个 x 或 y 上的一轮迭代。请注意,与 initial_epoch 一起,epochs 被理解为 「最终轮次」。模型并不是训练了 epochs 轮,而是到第 epochs 轮停止训练。
  • verbose: 0, 1 或 2。日志显示模式。 0 = 安静模式, 1 = 进度条, 2 = 每轮一行。
  • callbacks: 一系列的 keras.callbacks.Callback 实例。一系列可以在训练时使用的回调函数。详见 callbacks
  • validation_split: 在 0 和 1 之间浮动。用作验证集的训练数据的比例。模型将分出一部分不会被训练的验证数据,并将在每一轮结束时评估这些验证数据的误差和任何其他模型指标。验证数据是混洗之前 x 和y 数据的最后一部分样本中。
  • validation_data: 元组 (x_val,y_val) 或元组 (x_val,y_val,val_sample_weights),用来评估损失,以及在每轮结束时的任何模型度量指标。模型将不会在这个数据上进行训练。这个参数会覆盖 validation_split
  • shuffle: 布尔值(是否在每轮迭代之前混洗数据)或者 字符串 (batch)。batch 是处理 HDF5 数据限制的特殊选项,它对一个 batch 内部的数据进行混洗。当 steps_per_epoch 非 None 时,这个参数无效。
  • class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
  • sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为 (samples, sequence_length) 的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在 compile() 中指定 sample_weight_mode="temporal"
  • initial_epoch: 开始训练的轮次(有助于恢复之前的训练)。
  • steps_per_epoch: 在声明一个轮次完成并开始下一个轮次之前的总步数(样品批次)。使用 TensorFlow 数据张量等输入张量进行训练时,默认值 None 等于数据集中样本的数量除以 batch 的大小,如果无法确定,则为 1。
  • validation_steps: 只有在指定了 steps_per_epoch时才有用。停止前要验证的总步数(批次样本)。

返回

一个 History 对象。其 History.history 属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。

异常

  • RuntimeError: 如果模型从未编译。
  • ValueError: 在提供的输入数据与模型期望的不匹配的情况下。

evaluate

evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None)

在测试模式,返回误差值和评估标准值。

计算逐批次进行。

参数

  • x: 训练数据的 Numpy 数组。 如果模型中的输入层被命名,你也可以传递一个字典,将输入层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,x 可以是 None(默认)。
  • y: 目标(标签)数据的 Numpy 数组。 如果模型中的输出层被命名,你也可以传递一个字典,将输出层名称映射到 Numpy 数组。 如果从本地框架张量馈送(例如 TensorFlow 数据张量)数据,y 可以是 None(默认)。
  • batch_size: 整数或 None。每次提度更新的样本数。如果未指定,默认为 32.
  • verbose: 0, 1。日志显示模式。0 = 安静模式, 1 = 进度条。
  • sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。 您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为 (samples, sequence_length) 的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在 compile() 中指定 sample_weight_mode="temporal"
  • steps: 整数或 None。 声明评估结束之前的总步数(批次样本)。默认值 None

返回

标量测试误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names 将提供标量输出的显示标签。


predict

predict(x, batch_size=None, verbose=0, steps=None)

为输入样本生成输出预测。

计算逐批次进行。

参数

  • x: 输入数据,Numpy 数组(或者如果模型有多个输入,则为 Numpy 数组列表)。
  • batch_size: 整数。如未指定,默认为 32。
  • verbose: 日志显示模式,0 或 1。
  • steps: 声明预测结束之前的总步数(批次样本)。默认值 None

返回

预测的 Numpy 数组。

异常

  • ValueError: 如果提供的输入数据与模型的期望数据不匹配,或者有状态模型收到的数量不是批量大小的倍数。

train_on_batch

train_on_batch(x, y, sample_weight=None, class_weight=None)

一批样品的单次梯度更新。

Arguments

  • x: 训练数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输入都已命名,你还可以传入输入名称到 Numpy 数组的映射字典。
  • y: 目标数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输出都已命名,你还可以传入输出名称到 Numpy 数组的映射字典。
  • sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。 您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为 (samples, sequence_length) 的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在 compile() 中指定 sample_weight_mode="temporal"
  • class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。

返回

标量训练误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names 将提供标量输出的显示标签。


test_on_batch

test_on_batch(x, y, sample_weight=None)

在一批样本上评估模型。

参数

  • x: 训练数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输入都已命名,你还可以传入输入名称到 Numpy 数组的映射字典。
  • y: 目标数据的 Numpy 数组,如果模型具有多个输入,则为 Numpy 数组列表。如果模型中的所有输出都已命名,你还可以传入输出名称到 Numpy 数组的映射字典。
  • sample_weight: 训练样本的可选 Numpy 权重数组,用于对损失函数进行加权(仅在训练期间)。 您可以传递与输入样本长度相同的平坦(1D)Numpy 数组(权重和样本之间的 1:1 映射),或者在时序数据的情况下,可以传递尺寸为 (samples, sequence_length) 的 2D 数组,以对每个样本的每个时间步施加不同的权重。在这种情况下,你应该确保在 compile() 中指定 sample_weight_mode="temporal"

返回

标量测试误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names 将提供标量输出的显示标签。


predict_on_batch

predict_on_batch(x)

返回一批样本的模型预测值。

参数

  • x: 输入数据,Numpy 数组或列表(如果模型有多输入)。

返回

预测值的 Numpy 数组。


fit_generator

fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0)

使用 Python 生成器或 Sequence 实例逐批生成的数据,按批次训练模型。

生成器与模型并行运行,以提高效率。 例如,这可以让你在 CPU 上对图像进行实时数据增强,以在 GPU 上训练模型。

keras.utils.Sequence 的使用可以保证数据的顺序, 以及当 use_multiprocessing=True 时 ,保证每个输入在每个 epoch 只使用一次。

参数

  • generator: 一个生成器或 Sequence (keras.utils.Sequence) 对象的实例,以避免在使用多进程时出现重复数据。 生成器的输出应该为以下之一:

    • 一个 (inputs, targets) 元组
    • 一个 (inputs, targets, sample_weights) 元组。 这个元组(生成器的单个输出)表示一个独立批次。因此,此元组中的所有数组必须具有相同的长度(等于此批次的大小)。不同的批次可能具有不同的大小。例如,如果数据集的大小不能被批量大小整除,则最后一批时期通常小于其他批次。生成器将无限地在数据集上循环。当运行到第 steps_per_epoch 时,记一个 epoch 结束。
  • steps_per_epoch: 整数。在声明一个 epoch 完成并开始下一个 epoch 之前从 generator 产生的总步数(批次样本)。它通常应该等于你的数据集的样本数量除以批量大小。可选参数 Sequence:如果未指定,将使用 len(generator) 作为步数。
  • epochs: 整数,数据的迭代总轮数。一个 epoch 是对所提供的整个数据的一轮迭代,由 steps_per_epoch 所定义。请注意,与 initial_epoch 一起,参数 epochs 应被理解为 「最终轮数」。模型并不是训练了 epochs 轮,而是到第 epochs 轮停止训练。
  • verbose: 日志显示模式。0,1 或 2。0 = 安静模式,1 = 进度条,2 = 每轮一行。
  • callbackskeras.callbacks.Callback 实例列表。在训练时调用的一系列回调。详见 callbacks
  • validation_data: 它可以是以下之一:
    • 验证数据的生成器或 Sequence 实例
    • 一个 (inputs, targets) 元组
    • 一个 (inputs, targets, sample_weights) 元组。
  • validation_steps: 仅当 validation_data 是一个生成器时才可用。 每个 epoch 结束时验证集生成器产生的步数。它通常应该等于你的数据集的样本数量除以批量大小。可选参数 Sequence:如果未指定,将使用 len(generator) 作为步数。
  • class_weight: 可选的字典,用来映射类索引(整数)到权重(浮点)值,用于加权损失函数(仅在训练期间)。这可能有助于告诉模型 「更多关注」来自代表性不足的类的样本。
  • max_queue_size: 整数。生成器队列的最大尺寸。如果未指定,max_queue_size 将默认为 10。
  • workers: 整数。使用基于进程的多线程时启动的最大进程数。如果未指定,worker 将默认为 1。如果为 0,将在主线程上执行生成器。
  • use_multiprocessing: 如果 True,则使用基于进程的多线程。如果未指定,use_multiprocessing将默认为 False。请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
  • shuffle: 布尔值。是否在每轮迭代之前打乱 batch 的顺序。只能与 Sequence(keras.utils.Sequence) 实例同用。在 steps_per_epoch 不为 None 是无效果。
  • initial_epoch: 整数。开始训练的轮次(有助于恢复之前的训练)。

返回

一个 History 对象。其 History.history 属性是连续 epoch 训练损失和评估值,以及验证集损失和评估值的记录(如果适用)。

异常

  • ValueError: 如果生成器生成的数据格式不正确。

例子

def generate_arrays_from_file(path):
while True:
with open(path) as f:
for line in f:
# 从文件中的每一行生成输入数据和标签的 numpy 数组
x1, x2, y = process_line(line)
yield ({'input_1': x1, 'input_2': x2}, {'output': y}) model.fit_generator(generate_arrays_from_file('/my_file.txt'),
steps_per_epoch=10000, epochs=10)

evaluate_generator

evaluate_generator(generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

在数据生成器上评估模型。

这个生成器应该返回与 test_on_batch 所接收的同样的数据。

参数

  • generator: 生成器,生成 (inputs, targets) 或 (inputs, targets, sample_weights),或 Sequence (keras.utils.Sequence) 对象的实例,以避免在使用多进程时出现重复数据。
  • steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
  • max_queue_size: 生成器队列的最大尺寸。
  • workers: 整数。使用基于进程的多线程时启动的最大进程数。如果未指定,worker 将默认为 1。如果为 0,将在主线程上执行生成器。
  • use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
  • verbose:日志显示模式,0 或 1。

返回

标量测试误差(如果模型只有单个输出且没有评估指标)或标量列表(如果模型具有多个输出和/或指标)。 属性 model.metrics_names 将提供标量输出的显示标签。

异常

  • ValueError: 如果生成器生成的数据格式不正确。

predict_generator

predict_generator(generator, steps=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0)

为来自数据生成器的输入样本生成预测。

这个生成器应该返回与 predict_on_batch 所接收的同样的数据。

参数

  • generator: 返回批量输入样本的生成器,或 Sequence (keras.utils.Sequence) 对象的实例,以避免在使用多进程时出现重复数据。
  • steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
  • max_queue_size: 生成器队列的最大尺寸。
  • workers: 整数。使用基于进程的多线程时启动的最大进程数。如果未指定,worker 将默认为 1。如果为 0,将在主线程上执行生成器。
  • use_multiprocessing: 如果 True,则使用基于进程的多线程。 请注意,因为此实现依赖于多进程,所以不应将不可传递的参数传递给生成器,因为它们不能被轻易地传递给子进程。
  • verbose: 日志显示模式, 0 或 1。

返回

预测值的 Numpy 数组。

异常

  • ValueError: 如果生成器生成的数据格式不正确。

get_layer

get_layer(name=None, index=None)

根据名称(唯一)或索引值查找网络层。

如果同时提供了 name 和 index,则 index 将优先。

根据网络层的名称(唯一)或其索引返回该层。索引是基于水平图遍历的顺序(自下而上)。

参数

  • name: 字符串,层的名字。
  • index: 整数,层的索引。

返回

一个层实例。

异常

  • ValueError: 如果层的名称或索引不正确。

Keras Model Sequential模型接口的更多相关文章

  1. Python机器学习笔记:深入学习Keras中Sequential模型及方法

    Sequential 序贯模型 序贯模型是函数式模型的简略版,为最简单的线性.从头到尾的结构顺序,不分叉,是多个网络层的线性堆叠. Keras实现了很多层,包括core核心层,Convolution卷 ...

  2. 深入学习Keras中Sequential模型及方法

    https://www.cnblogs.com/wj-1314/p/9579490.html

  3. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  4. keras系列︱Sequential与Model模型、keras基本结构功能(一)

    引自:http://blog.csdn.net/sinat_26917383/article/details/72857454 中文文档:http://keras-cn.readthedocs.io/ ...

  5. 【Keras学习】Sequential模型

    序贯(Sequential)模型 序贯模型是多个网络层的线性堆叠,也就是“一条路走到黑”. 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.mode ...

  6. Keras之序贯(Sequential)模型

    序贯模型(Sequential) 序贯模型是多个网络层的线性堆叠. 可以通过向Sequential模型传递一个layer的list来构造该模型: from Keras.models import Se ...

  7. keras模块学习之Sequential模型学习笔记

    本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! Sequential是多个网络层的线性堆叠 可以通过向Sequential模型传递一个layer的list来构造该模型: from ...

  8. Problem after converting keras model into Tensorflow pb - 将keras模型转换为Tensorflow pb后的问题

    I'm using keras 2.1.* with tensorflow 1.13.* backend. I save my model during training with .h5 forma ...

  9. keras开发成sklearn接口

    我们可以通过包装器将Sequential模型(仅有一个输入)作为Scikit-Learn工作流的一部分,相关的包装器定义在keras.wrappers.scikit_learn.py中: 这里有两个包 ...

随机推荐

  1. USACO JAN14 奶牛冰壶运动 凸包+判定

    满足条件的一定是在凸包内的,直接判断 恬不知耻的加了特判,2333 #include<cstdio> #include<iostream> #include<cstrin ...

  2. Laravel分页带参数的实现方法

    控制器: $data['type'] = 5;$data['member_list'] = Member::orderBy('id', 'desc')->paginate(10);return ...

  3. mybatis 异常Result Maps collection does not contain value for java.lang.String

    Result Maps collection does not contain value for java.lang.String 以上是我报的错. 只要报Result Maps collectio ...

  4. java 关闭钩子函数的应用

    Runtime.getRuntime().addShutdownHook(shutdownHook); 说明:这个方法的意思就是在jvm中增加一个关闭的钩子,当jvm关闭的时候,会执行系统中已经设置的 ...

  5. Django web框架开发基础-django实现留言板功能

    1.创建项目 cmd  django-admin startpoject cloudms 2.创建APP cmd django-admin startapp msgapp 3.修改settings,T ...

  6. TensorFlow之RNN:堆叠RNN、LSTM、GRU及双向LSTM

    RNN(Recurrent Neural Networks,循环神经网络)是一种具有短期记忆能力的神经网络模型,可以处理任意长度的序列,在自然语言处理中的应用非常广泛,比如机器翻译.文本生成.问答系统 ...

  7. 基于JavaMail开发邮件发送器工具类

    基于JavaMail开发邮件发送器工具类 在开发当中肯定会碰到利用Java调用邮件服务器的服务发送邮件的情况,比如账号激活.找回密码等功能.本人之前也碰到多次这样需求,为此特意将功能封装成一个简单易用 ...

  8. 如何在ASP.NET Core中自定义Azure Storage File Provider

    文章标题:如何在ASP.NET Core中自定义Azure Storage File Provider 作者:Lamond Lu 地址:https://www.cnblogs.com/lwqlun/p ...

  9. 学习python的第二天

    4.26自我总结 一.程序语言 1.机械语言 由于0和1组成 优点:执行效率快 缺点:操作麻烦繁琐 2.汇编语言 比机械语言好点 优点:比机械语言操作方便 缺点,执行慢 3.高级语言 主要两个,jav ...

  10. 学习 day4 html 盒子模型

    盒子模型 1.框模型 框:页面上所有元素都可以称为“框” 框模型:(BOX Model),又称盒子模型 定义框处理元素内容.内边距padding.外边距margin.边框的样式border 外边距ma ...