Description

  求有多少种长度为 n 的序列 A,满足以下条件:
  1. 1 ~ n 这 n 个数在序列中各出现了一次
  2. 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的
  满足条件的序列可能很多,序列数对 10^9+7 取模。

Input

  第一行一个数 T,表示有 T 组数据。
  接下来 T 行,每行两个整数 n、m。
  T=500000,n≤1000000,m≤1000000

Output

  输出 T 行,每行一个数,表示求出的序列数

Sample Input

5
1 0
1 1
5 2
100 50
10000 5000

Sample Output

0
1
20
578028887
60695423

HINT

Source

  鸣谢Menci上传

Solution

  我们选$m$个数稳定,其余$n - m$个数不稳定,那么方案数即为错位全排列

  选$m$个数的方案有$C_{n}^{m}$种,乘起来即可。

  排列数计算除法用乘法逆元替代,好像用exgcd常数小一些= =

  错排公式:$f[n] = (n - 1)(f[n - 1] + f[n - 2]) = nf[n - 1] + (-1)^{n}$

 #include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll MOD = ;
ll a[], f[], inv[]; ll pow(ll x)
{
ll ans = , y = MOD - ;
for(; y; y >>= , x = x * x % MOD)
if(y & ) ans = ans * x % MOD;
return ans;
} ll C(int x, int y)
{
return f[x] * inv[x - y] % MOD * inv[y] % MOD;
} int main()
{
int t, n, m;
f[] = , a[] = , a[] = ;
for(int i = ; i <= ; i++)
f[i] = f[i - ] * i % MOD;
for(int i = ; i <= ; i++)
inv[i] = pow(f[i]);
for(int i = ; i <= ; i++)
a[i] = (a[i - ] + a[i - ]) * (i - ) % MOD;
scanf("%d", &t);
while(t--)
{
scanf("%d%d", &n, &m);
if(m <= n) printf("%lld\n", C(n, m) * a[n - m] % MOD);
else puts("");
}
return ;
}

[BZOJ4517] [Sdoi2016] 排列计数 (数学)的更多相关文章

  1. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  2. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  3. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  4. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  5. 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)

    传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...

  6. BZOJ4517——[Sdoi2016]排列计数

    求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...

  7. BZOJ4517: [Sdoi2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  9. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

随机推荐

  1. Jenkins系列——使用checkstyle进行代码规范检查【升级版】

    1.背景 在<Jenkins系列——使用checkstyle进行代码规范检查>一文中完成了ant实现代码规范检查的例子.但存在以下缺陷: 每个作业都需要配置一个不同的checkstyle ...

  2. Java多维数组各轴长度可以不对齐

  3. hdu1251 map水过

    更快的方法应该是字典树,不用处理前缀. AC代码: #include<iostream> #include<cstring> #include<string> #i ...

  4. React——共享state

    通常,一些组件需要反映相同的数据更改,这种情况推荐将共享state移动到它们最近的公共祖先上. 在这里有一个例子:有一个温度计算器计算在给定温度是否能让水沸腾,用户可以输入华氏温度也能输入摄氏温度,当 ...

  5. Codeforces 257D

    题意略. 思路:这个题目最重要的是那个不等式 a[i] <= a[i+1] <= 2 * a[i]  ,你会发现0 <= a[i+1]  -  a[i] <= a[i],令x ...

  6. Luogu P1092 虫食算

    题目描述 所谓虫食算,就是原先的算式中有一部分被虫子啃掉了,需要我们根据剩下的数字来判定被啃掉的字母.来看一个简单的例子: 43#9865#045 +8468#6633 44445509678 其中# ...

  7. Storm+HBase实时实践

    1.HBase Increment计数器 hbase counter的原理: read+count+write,正好完成,就是讲key的value读出,若存在,则完成累加,再写入,若不存在,则按&qu ...

  8. linux及hadoop修改权限

    linux下修改文件权限: 在shell环境里输入:ls -l 或者 ls -lh drwxr-xr-x 2 nsf users 1024 12-10 17:37 下载文件备份对应:文件属性 连接数 ...

  9. linux ftp及C/S服务架构

    乱码转换工具使用convmv软件:windows中文字符编码为GB2312 linux中文字符编码为utf-8选项:-f:源文件中中文字符编码-t:转换成字符编码-r:代表递归--notest:不测试 ...

  10. SAS 9.4 的sid问题解决方案汇总(头疼...)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 因为经常出现sid出现问题,所以问题很多.最常 ...