博客地址:http://www.cnblogs.com/yudanqu/

  numpy和pandas是python进行数据分析的非常简洁方便的工具,话不多说,下面先简单介绍一些关于他们入门的一些知识。下面我尽量通过一些简单的代码来解释一下他们该怎么使用。以下内容并不是系统的知识体系,我只是尽可能把最基础的知识点列写一下。

一、numpy
1、array

1 import numpy
2 list_1 = [1,2,3,4]
3 array_1 = numpy.array(list_1) # 一维数组
4 list_2 = [4,5,6,7]
5 array_2 = numpy.array([list_1,list_2]) # 二维数组
 array_2.shape # 查看数组特征,eg:2行4列
array_2.size # 查看元素个数, eg:8
array_2.dtype # 查看数组类型,eg:int64

注:numpy.arange(n) #与python中的range区别是前面有个a

 numpy.zeros(s) # 全0矩阵,s可以为一个数也可以为一个列表,eg:[2,3]表示2*3的二维数组
numpy.eye(a) # 单位矩阵,生成的是浮点数
  • 访问数组中元素:

  一维:array_1[2] 、array_1[1:4]
  二维:array_2[1][2] 、array_2[1,2] 、array_2[:1,1:4]

  其中可以根据python中列表的切片来访问数据

2、数组与矩阵运算

~~数组array

 numpy.random.randn(10) # 十个元素的一维数组
numpy.random.randint(10,size=20).reshape(4,5) # 产生20个10以内的随机整数,后面的reshape是将这些数重新写成一个4*5的二维数组
  • 数组之间维度相同可以直接进行加减乘除(除数不能为0)
  • numpy.unique(array_1) # 找到里面所有的数但不重复
  • sum:二维数组中对每一列求和 sum(array_2)
    • sum(array_2[0) 对第一行求和
    • sum(array_2[:,0] 对第一列求和
  • array_2.max() #求最大值,对某行某列求则同sum

~~矩阵matric

 numpy.mat([1,2,3],[4,5,6]) # 生成一个二维矩阵
numpy.mat(array_1) # 将数组转换成矩阵

注:矩阵之间维度相同可以直接进行加减运算,而乘除运算需要行和列交叉对应,参照线性代数中的知识。

3、input和output:

 import numpy as np
f = open('x.pkl','wb')
#序列化到硬盘 #pickle
import pickle
pickle.dump(x,f) # 产生pkl文件
pickle.load(f) # 提取pkl文件 #numpy本身的工具
numpy.save('one_array',x)
numpy.load('one_array.npy')
numpy.savez('two_array.npz',a=x,b=y) # 对多个进行操作,进行压缩储存
c = numpy.load('two_array.npz') # 提取文件
c['a'] #第一个文件
c['b'] #第二个文件

二、pandas

1、Series

 import numpy as np
import pandas as pd
#下面是创建Series的三种方法
#方法1:s1 = pd.Series([1,2,3,4])
#方法2:s2 = pd.Series(np.arange(10)) # 通过numpy.arange创建
#方法3:s3 = pd.Series({'1':1,'2':2,'3':3}) # 通过字典创建
s1.values # 查看值
s1.index # 查看索引
s4 = pa.Series([1,2,3,4],index=['A','B','C','D']) # 设置索引
s4.to_dict() # 转化成字典
pd.isnull(s4) #判断其中元素是否为NaN,pd.notnull()同理

2、DataFrame

 from pandas import Series,DataFrame
#通过粘贴板导入dataframe
df = pd.read_clipboard() # 在此之前需要你copy一个表
df.columns # 输出列名
df.'列名' # 输出列的数值(是一个Series)
df_new = DataFrame(df,columns=['列名1','列名2'])
s1 = pd.Series(df['列名']) # 输出这一列,dataframe的每一列是一个series
s1.index\values 即对series操作,或者通过s1['索引值']
  • df1.iterrows() #返回一个生成器,可以用for循环来访问

    • eg: for row in df1.iterrows():
    • print(row) #返回的数据为一个tuple
  • s1,s2,s3为3个Series,用其组成一个人dataframe:
    • df_new = pd.DataFrame([s1,s2,s3],index=['A','B','C'])
    •   # index是每个Series的名称
    •   # 初始是按横向拼接成的dataframe
    •   df1 = df1.T #转置,转置之后就和直接用dataframe生成的一样了

三、IO操作:

1、从粘贴板读取

 df1 = pd.read_clipboard()
df1.to_clipboard() # 写入粘贴板

2、CSV文件

 df1.to_csv('名字.csv',index=False) # false则表示不添加索引号
df2 = pd.read_csv('df1.csv') # 读取CSV文件

3、json

 df1.to_json() # 转化成json文件
pd.read_json(df1.to_json()) # 读取json文件

4、html

 df1.to_html('df1_html') # 转换成HTML文件

5、excel

 df1.to_excel('df1.xlsx') # 生成Excel文件

四、Selecting and Indexing

 df.head() # 返回前五行
df.tail() # 返回后五行
# 返回更多的内容则在括号中写出来,不写则默认为五行
df.iloc[:,:] #索引切片,定位,基于index,与索引名无关
df.loc[:,:] # 根据索引名来,label来过滤

Reindex:

~~series

 s1.reindex(index=['A','B','C','D','E'],fill_value=10)
# fill_value 是指当重新写的index中有原来没有的,那么他本身输出为NaN,fill值为添加到这个索引下的值
# 创建一个新Series,另一种赋值的方法
s2 = Series(['A','B','C','D'],index=[1,5,10])
s2.reindex(index=range(15)) # 生成15个索引的Series,除了原有的其他的都是NaN
s2.reindex(index=range(15),method='ffill') # 在上一步的基础上,按顺序将上一个value填充到他下面的几个中(forward fill)
s1.drop('A') # 表示删除A的内容

~~dataframe

 # 创建一个5*5的,通过numpy进行reshape
df1 = DataFrame(np.random.rand(25).reshape([5,5]),index=['A','B','D','E','F'],colums=['c1','c2','c3','c4','c5']) # 遗漏的index中的C,通过reindex来恢复
df1.reindex(index=['A','B','C','D','E','F']) # C被恢复并把value填充为NaN
# columns 同理
# 当index减少时就表现出切割的现象
df1.drop('A',axis=0) # axis=0,代表删除行;axis=1,代表删除列(后面遇到axis同样是这个意思)

五、NaN

  • n = np.nan

    • type(n) 是个浮点数float
    • 与nan的运算结果均是nan

nan in series:

  • s1.isnull\notnull() 判断是否为nan
  • s1.dropna() # 删除掉value为NaN的行

nan in dataframe:

  • 判断同series
 df.dropna(axis=0,how='any',thresh=None) # axis表示行和列0,1来表示,how为any时表示有Nan就删掉,为all时表示全为nan时才删掉;thresh表示一个界限,超过这个数字的nan则被删掉
df.fillna(value=1) # 表示所有为nan的地方填充为1
df.fillna(value={0:0,1:1,2:2,3:3}) # 表示第一列的填充1,第二列的填充2,后面同理

注:dropna,fillna不改变原始数组

六、多级index

  • index=[['1','1','1','2','2','2'],['a','b','c','a','b','c']] # 1,2为一级标题,abc为二级标题,即1的series下有abc,原始series下有1,2;获取内容时,可以s1['1']['a']
  • s1[:,'a'] 返回所有一级series里的a
  • 与dataframe的转换:
    • df1 = s1.unstack()
  • 逆转换:
    • s2 = df1.unstack() # 这时一二级换了位置
    • s2 = df1.T.unstack() # 这时是和原始完全一样的

注:dataframe的index和columns都可以转换成多级的

七、mapping and replace

当想在一个dataframe中加一列(columns),可以直接加df['列名']=Series([数据])
也可以通过map:创建一个字典,字典中的键是dataframe中的columns:
df1['新列名'] = df1['字典中的键那一列'].map(那个字典) 这个可以固定对应位置,方便改值,可以指定index来改值

replace in series:

 s1.replace({1,np.nan}) # 通过字典来改值
s1.replace([1,2,3],[10,20,30]) # 把123索引改成10,20,30

  作者:渔单渠

  博客地址:http://www.cnblogs.com/yudanqu/

  以上内容是我的一点点总结,希望能给有需要的朋友带来带你帮助,也希望有大神来指点指点。

python--Numpy and Pandas 基本语法的更多相关文章

  1. python numpy和pandas做数据分析时去掉科学记数法显示

    1.Numpy import numpy as np np.set_printoptions(suppress=True, threshold=np.nan) suppress=True 取消科学记数 ...

  2. Python Numpy,Pandas基础笔记

    Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...

  3. python安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...

  4. [转] python安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了.首要条件,python版本必须 ...

  5. 有关python numpy pandas scipy 等 能在YARN集群上 运行PySpark

    有关这个问题,似乎这个在某些时候,用python写好,且spark没有响应的算法支持, 能否能在YARN集群上 运行PySpark方式, 将python分析程序提交上去? Spark Applicat ...

  6. Python入门之安装numpy和pandas

    最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装numpy和pandas因为linux环境没有外网遇到了很多问题就记下来了. 首要条件,python版本必 ...

  7. python及numpy,pandas易混淆的点

    https://blog.csdn.net/happyhorizion/article/details/77894035 初接触python觉得及其友好(类似matlab),尤其是一些令人拍案叫绝不可 ...

  8. 【转载】python安装numpy和pandas

    转载:原文地址 http://www.cnblogs.com/lxmhhy/p/6029465.html 最近要对一系列数据做同比比较,需要用到numpy和pandas来计算,不过使用python安装 ...

  9. linux离线搭建Python环境及安装numpy、pandas

    1.安装python2.7.3 Cent OS 6.5默认装的有python2.6.6,需要重新安装python2.7.3下载地址:https://www.python.org/downloads/s ...

  10. Python离线断网情况下安装numpy、pandas和matplotlib等常用第三方包

    联网情况下在命令终端CMD中输入“pip install numpy”即可自动安装,pandas和matplotlib同理一样方法进行自动安装. 工作的电脑不能上外网,所以不能通过直接输入pip命令来 ...

随机推荐

  1. iOS中 语音识别功能/语音转文字教程详解 韩俊强的博客

    每日更新关注:http://weibo.com/hanjunqiang  新浪微博 原文地址:http://blog.csdn.net/qq_31810357/article/details/5111 ...

  2. Fresco图片框架内部实现原理探索

    流行的网络框架 目前流行的网络图片框架: Picasso.Universal Image Loader.Volley的(ImageLoader.NetworkImageView).Glide和Fres ...

  3. Gradle笔记——关于Gradle 1.12

    到目前为止,Gradle已经出到2.1版本了,从1.12这个版本开始看,主要是因为我使用Gradle是Android开发所需要.公司里面是采用Android Studio来进行Android项目的开发 ...

  4. Spring+Hibernate4 Junit 报错No Session found for current thread

    论坛上有另外一篇更全面的帖子,jinnianshilongnian写的:http://www.iteye.com/topic/1120924 本文的环境是:  spring-framework-3.1 ...

  5. flex 强制转换类型失败无法将object转换为XXX

    错误描述 flex在加载module时报出如题所示的错误, 实际表现 问题就出现在这 我取消这个错误提示框 再次在前台查询数据 就一切ok 问题就出现在这一句 var zoufangModel:ZfR ...

  6. 图文浅析APK程序运行的过程

    概述 APK程序运行过程有别于FrameWork底层启动过程,它们是倆码事,本文将以图文方式总结一下APK启动的过程,主要分为一下部分 [1]基本概念 [2]APK过程 1 .新的知识点 [1]什么是 ...

  7. 【一天一道LeetCode】#93. Restore IP Addresses

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  8. C++ Primer 有感(new和delete表达式)

    定义变量时,必须指定其数据类型和名字.而动态创建对象时,只需指定其数据类型,而不必为该对象命名.取而代之的是,new表达式返回指向性创建的指针. 1.动态创建对象的默认初始化 对于类类型的对象,用该类 ...

  9. python的sorted

    读入后,要进行组内排序,按groupseq字段排序后,然后统计前后两个项的个数,累加到全局. sorted函数使用如下: def sortlist(alllist):     sorted_key1_ ...

  10. c语言和java的区别

    今晚读了一下c程序设计语言,这是一本经典书籍,发现C语言和java有很多是相同的,毕竟java是由c语言进化来的. 我大概从我自己的思考来谈谈不同点 1.c语言是面向过程,主要单位是函数,变量和函数的 ...