[SDOI2017]苹果树
题目描述
https://www.luogu.org/problemnew/show/P3780
题解
一道思路巧妙的背包题。
对于那个奇怪的限制,我们对此稍加分析就可以发现它最后选择的区域是一个包含根节点的联通块。
对于\(t-h\leq k\)这个限制,我们可以把它看做是可以选择一条从根到某个节点的一条链,在这条链上不耗费任何代价的拿一个苹果,但是再去拿其它苹果是要有代价的。
根据贪心,我们的链一定是一直选到叶子的,所以我们最后是要枚举岁有的叶子。
在这个时候我们可以想到在枚举这个叶子的时候,这个叶子把dfs序分成了两半,我们可以预处理出前后缀的背包值,在枚举叶子的时候做一次背包合并。
然后我们的问题就变成了处理前后缀的背包值。
后面就比较神仙了,对于正着的部分,我们按照dfs先序遍历依次dp,进入这个节点的时候就把有代价的部分做背包,遍历儿子的时候就往下赋值,往上更新的时候把必须拿的那个更新上。
这样可以保证遍历到某个叶子的时候,上面的节点还没有动那个免费的苹果。
对于反着的部分,我们只有在往上更新的时候把免费的和付费的全部更新,这样可以保证到叶子的时候上面什么都没算,就可以放心合并了。
实现起来细节比较多%了\(Claris\)的代码。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#define N 20009
#define M 500009
using namespace std;
typedef long long ll;
const int maxnum=25600009;
int tot,head[N],a[N],b[N],dfn1[N],dfn2[N],n,k,siz,fa[N],K;
int fz[M],q[M],ans;
int dp1[maxnum],dp2[maxnum];
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
struct edge{int n,to;}e[N];
inline void add(int u,int v){e[++tot].n=head[u];e[tot].to=v;head[u]=tot;}
inline void solve(int *dp,int a,int b){
int nowval=0;
int h=1,t=0;
for(int i=0;i<=k;++i){
dp[i]-=nowval;
while(h<=t&&dp[q[t]]<=dp[i])t--;
q[++t]=i;
while(h<=t&&q[h]+a<i)h++;
fz[i]=dp[q[h]]+nowval;
nowval+=b;
}
memcpy(dp,fz,siz);
}
void dfs1(int u){
int *now=dp1+dfn1[u]*K,nowa=a[u]-1,nowb=b[u];
if(nowa)solve(now,nowa,nowb);
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
dfn1[v]=++dfn1[0];
memcpy(dp1+dfn1[v]*K,now,siz);
dfs1(v);
}
if(fa[u]){
int *now1=dp1+dfn1[fa[u]]*K+1,*now2=dp1+dfn1[u]*K;
for(int j=1;j<=k;++j,now1++,now2++)*now1=max(*now1,*now2+b[u]);
}
}
void dfs2(int u,int val){
for(int i=head[u];i;i=e[i].n){
int v=e[i].to;
dfn2[v]=++dfn2[0];
memcpy(dp2+dfn2[v]*K,dp2+dfn2[u]*K,siz);
dfs2(v,val+b[v]);
}
if(!head[u]){
int *now1=dp1+dfn1[u]*K,*now2=dp2+dfn2[u]*K;
for(int j=0;j<=k;++j)ans=max(ans,*(now1+j)+*(now2+k-j)+val);;
}
int *now1=dp2+dfn2[u]*K,nowa=a[u]-1,nowb=b[u];
if(nowa)solve(now1,nowa,nowb);
if(fa[u]){
int *now1=dp2+dfn2[u]*K;
int *now2=dp2+dfn2[fa[u]]*K;now2++;
for(int j=1;j<=k;++j,now1++,now2++)*now2=max(*now2,*now1+b[u]);///!!!!!!!!!!
}
}
inline void unit(){
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
memset(head,0,sizeof(head));
memset(dfn1,0,sizeof(dfn1));
memset(dfn2,0,sizeof(dfn2));
tot=ans=0;
}
int main(){
int T=rd();
while(T--){
n=rd();k=rd();K=k+1;
siz=K*sizeof(int);
unit();
for(int i=1;i<=n;++i){
fa[i]=rd();
if(fa[i])add(fa[i],i);
a[i]=rd();b[i]=rd();
}
dfs1(1);
memset(head,0,sizeof(head));
tot=0;
for(int i=n;i>=1;--i)if(fa[i])add(fa[i],i);
dfs2(1,b[1]);
printf("%d\n",ans);
}
return 0;
}
[SDOI2017]苹果树的更多相关文章
- sdoi2017苹果树
题解: 非常奇妙的一题.. 没有免费操作我都不会$nk$....考试打个暴力就可以走人了 树上有依赖背包问题的正确做法是(为啥我之前学的不是这样的啊) 按照后续遍历做背包 做到一个点的时候 枚举它选不 ...
- BZOJ.4910.[SDOI2017]苹果树(树形依赖背包 DP 单调队列)
BZOJ 洛谷 \(shadowice\)已经把他的思路说的很清楚了,可以先看一下会更好理解? 这篇主要是对\(Claris\)题解的简单说明.与\(shadowice\)的做法还是有差异的(比如并没 ...
- BZOJ4910 : [Sdoi2017] 苹果树
问题等价于树形依赖背包,允许一条链每个点各免费一次. 设$f[i][j]$表示按DFS序考虑到$i$,体积为$j$的最大收益. 先放入不能免费的物品,等遍历完儿子后再放入必选的物品,那么$i$到根路径 ...
- 【做题】SDOI2017苹果树——dfs序的运用
原文链接 https://www.cnblogs.com/cly-none/p/9845046.html 题意:给出一棵\(n\)个结点的树,在第\(i\)个结点上有\(a_i\)个权值为\(v_i\ ...
- hs-black 杂题选讲
[POI2011]OKR-Periodicity 考虑递归地构造,设 \(\text{solve(s)}\) 表示字典序最小的,\(\text{border}\) 集合和 \(S\) 的 \(\tex ...
- DP 优化小技巧
收录一些比较冷门的 DP 优化方法. 1. 树上依赖性背包 树上依赖性背包形如在树上选出若干个物品做背包问题,满足这些物品连通.由于 01 背包,多重背包和完全背包均可以在 \(\mathcal{O} ...
- 【LOJ】#2268. 「SDOI2017」苹果树
题解 显然权值都是正的,我们最深的那个点一定延伸到了某个叶子 我们抛去这条链之外再选K个点即可 如果直接对一棵树选K个点,满足这样的依赖关系,可以通过一个后序遍历的顺序做出来 转移方法是 \(dp[i ...
- SDOI2017 Round2 详细题解
这套题实在是太神仙了..做了我好久...好多题都是去搜题解才会的 TAT. 剩的那道题先咕着,如果省选没有退役就来填吧. 「SDOI2017」龙与地下城 题意 丢 \(Y\) 次骰子,骰子有 \(X\ ...
- codevs 1228 苹果树 树链剖分讲解
题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...
随机推荐
- 基础设施DevOps演进之路
Related Links:Zuul https://github.com/Netflix/zuulCAT https://github.com/dianping/cat Apollo h ...
- Poj1477
Box of Bricks Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24101 Accepted: 9378 De ...
- 初学Linux要掌握的命令
echo:打印,或者直接输出指定的字符串 语法:echo (选项) (参数) 选项:/a: 发出警告声 /b: 删除前一个字符 /c: 最后不加上换行符号 /f: 换行但光标仍旧停留在原来的位置 /n ...
- PhP数据库 Mysql dos命令
mysql 这是一个关系型数据库,存在表的概念. 结构 数据库可以存放多张表,每个表可以存放多个字段,每个字段可以存放多个记录. dos命令操作数据库 phpstudy使用终端打开数据库 第一步: 第 ...
- vue学习记录③(路由)
上篇文章我们用vue-cli脚手架工具做了个简单的hello world页面,但是我们破坏了原来的流程,而正常的访问页面应该是通过路由来实现的. 那么什么是路由呢? 路由就是通过不同的url来访问不同 ...
- 学习axios
axios({ method: 'post', url: '/user/12345', data: { firstName: 'Fred', lastName: 'Flintstone' } }) . ...
- Dynamics 365-关于BPF的进一步探究
关于BPF是什么,以及如何在CRM中配置BPF,可以参阅熊宸大神的博客Dynamics 365 Business Process Flow -- 让你不再惧怕复杂的业务流程! 1. CRM中发生了什么 ...
- new会返回NULL空指针吗
c++中的new会返回NULL空指针吗 https://stackoverflow.com/questions/3389420/will-new-operator-return-null On a s ...
- socket通信如何处理每次包长度不定问题
说起来,这是一个漫长的问题: 客户端和服务器通信的结构是:包头+数据长度+数据 客户端请求服务器发送200包数据.包头=request:长度=4(一个int),数据=200: 服务器在收到客户端的请求 ...
- 【原】无脑操作:IDEA热部署设置
热部署的概念:在应用正在运行的时候升级软件,却不需要重新启动应用.对于Java应用程序来说,热部署就是在运行时更新Java类文件. 注意:经过试验,IDEA 2017可以使用热部署,IDEA 14不行 ...