面试官,你再问我 Bit Operation 试试?
在面试环节中,面试官很喜欢问一些特别的题目,这些题目有着特殊的解法,如果回答的巧妙往往能在面试中加分。
在这些题目中,位操作(Bit Operation)就是极具魅力的一种。今天,吴师兄就来分享 LeetCode 上几道跟 Bit Operation 有关的题目。
题目一: 位 1 的个数
LeetCode上第 191 号问题:编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数。
该题比较简单,解法有挺多,有位移法、位操作法、查表法、二次查表法等方法。
观察一下 n 与 n-1 这两个数的二进制表示:对于 n-1 这个数的二进制来说,相对于 n 的二进制,它的最末位的一个 1 会变成 0,最末位一个 1 之后的 0 会全部变成 1,其它位相同不变。
比如 n = 8888,其二进制为 10001010111000
则 n - 1 = 8887 ,其二进制为 10001010110111
通过按位与操作后:n & (n-1) = 10001010110000
也就是说:通过 n&(n-1)这个操作,可以起到消除最后一个1的作用。
所以可以通过执行 n&(n-1) 操作来消除 n 末尾的 1 ,消除了多少次,就说明有多少个 1 。
代码如下:
class Solution {
public:
int hammingWeight(uint32_t n) {
int cnt = 0;
while(n > 0){
cnt++;
n = n & (n - 1);
}
return cnt;
}
};
题目二:2 的幂
LeetCode上第 231 号问题:给定一个整数,编写一个函数来判断它是否是 2 的幂次方。
首先,先来分析一下 2 的次方数的二进制写法:
表格
仔细观察,可以看出 2 的次方数都只有一个 1 ,剩下的都是 0 。根据这个特点,只需要每次判断最低位是否为 1 ,然后向右移位,最后统计 1 的个数即可判断是否是 2 的次方数。
代码很简单:
class Solution {
public:
bool isPowerOfTwo(int n) {
int cnt = 0;
while (n > 0) {
cnt += (n & 1);
n >>= 1;
}
return cnt == 1;
}
};
该题还有一种巧妙的解法。再观察上面的表格,如果一个数是 2 的次方数的话,那么它的二进数必然是最高位为1,其它都为 0 ,那么如果此时我们减 1 的话,则最高位会降一位,其余为 0 的位现在都为变为 1,那么我们把两数相与,就会得到 0。
比如 2 的 3 次方为 8,二进制位 1000 ,那么 8 - 1 = 7,其中 7 的二进制位 0111。
图 2
利用这个性质,只需一行代码就可以搞定。
class Solution {
public:
bool isPowerOfTwo(int n) {
return (n > 0) && (!(n & (n - 1)));
}
};
题目三:数字范围按位与
LeetCode上第 201 号问题:给定范围 [m, n],其中 0 <= m <= n <= 2147483647,返回此范围内所有数字的按位与(包含 m, n 两端点)。
示例 :
输入: [26,30]
输出: 24
首先,将 [ 26 , 30 ] 的范围数字用二进制表示出来:
11010 11011 11100 11101 11110
而输出 24 的二进制是 11000 。
可以发现,只要找到二进制的 左边公共部分 即可。
所以,可以先建立一个 32 位都是 1 的 mask,然后每次向左移一位,比较 m 和 n 是否相同,不同再继续左移一位,直至相同,然后把 m 和 mask 相与就是最终结果。
class Solution {
public:
int rangeBitwiseAnd(int m, int n) {
int d = INT_MAX;
while ((m & d) != (n & d)) {
d <<= 1;
}
return m & d;
}
};
题目四:重复的 DNA 序列
LeetCode上第 187 号问题:所有 DNA 由一系列缩写为 A,C,G 和 T 的核苷酸组成,例如:“ACGAATTCCG”。在研究 DNA 时,识别 DNA 中的重复序列有时会对研究非常有帮助。
编写一个函数来查找 DNA 分子中所有出现超过一次的 10 个字母长的序列(子串)。
示例:
输入: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"
输出: ["AAAAACCCCC", "CCCCCAAAAA"]
首先,依旧先将 A , C , G , T 的 ASCII 码用二进制来表示:
A: 0100 0001 C: 0100 0011 G: 0100 0111 T: 0101 0100
通过观察发现每个字符的后三位都不相同,因此可以用末尾的三位来区分这四个字符。
题目要求是查找 10 个字母长的序列,这里我们将每个字符用三位来区分的话,10 个字符就需要 30 位 ,在32位机上也 OK 。
为了提取出后 30 位,需要使用 mask ,取值为 0x7ffffff(二进制表示含有 27 个 1) ,先用此 mask 可取出整个序列的后 27 位,然后再向左平移三位可取出 10 个字母长的序列 ( 30 位)。
为了保存子串的频率,这里使用哈希表。
首先当取出第十个字符时,将其存在哈希表里,和该字符串出现频率映射,之后每向左移三位替换一个字符,查找新字符串在哈希表里出现次数,如果之前刚好出现过一次,则将当前字符串存入返回值的数组并将其出现次数加一,如果从未出现过,则将其映射到 1。
举个
面试官,你再问我 Bit Operation 试试?的更多相关文章
- Java面试官最爱问的volatile关键字
在Java的面试当中,面试官最爱问的就是volatile关键字相关的问题.经过多次面试之后,你是否思考过,为什么他们那么爱问volatile关键字相关的问题?而对于你,如果作为面试官,是否也会考虑采用 ...
- 拜托!面试请不要再问我Spring Cloud底层原理[z]
[z]https://juejin.im/post/5be13b83f265da6116393fc7 拜托!面试请不要再问我Spring Cloud底层原理 欢迎关注微信公众号:石杉的架构笔记(id: ...
- 基础面试,为什么面试官总喜欢问String?
关于 Java String,这是面试的基础,但是还有很多童鞋不能说清楚,所以本文将简单而又透彻的说明一下那个让你迷惑的 String 在 Java 中,我们有两种方式创建一个字符串 String x ...
- 大厂面试官最常问的@Configuration+@Bean(JDKConfig编程方式)
大厂面试官最常问的@Configuration+@Bean(JDKConfig编程方式) 现在大部分的Spring项目都采用了基于注解的配置,采用了@Configuration 替换标签的做法.一 ...
- Java面试官最常问的volatile关键字
在Java相关的职位面试中,很多Java面试官都喜欢考察应聘者对Java并发的了解程度,以volatile关键字为切入点,往往会问到底,Java内存模型(JMM)和Java并发编程的一些特点都会被牵扯 ...
- 一线大厂面试官最喜欢问的15道Java多线程面试题
前言 在任何Java面试当中多线程和并发方面的问题都是必不可少的一部分.如果你想获得更多职位,那么你应该准备很多关于多线程的问题. 他们会问面试者很多令人混淆的Java线程问题.面试官只是想确信面试者 ...
- 【测试工程师面试】在BOSS直聘上和面试官的一问一答
岗位描述: 信用卡核心系统功能测试,负责测试计划制定,测试设计,测试执行,测试进度掌控,自动化工具建设等工作.有责任心,执行力强,工作认真细致,逻辑思维强熟悉linux,oracle或者IBM大型机操 ...
- 面试官,别问我DNS了,也就这些!
提到网络,基本上都能把DNS给扯上去.为啥呢,今天我们来一探究竟. 1 Chrome浏览器原理 还记得面试过程中被问了千百遍的"输入URL后发生了什么"这个经典问题吗,因为这个问题 ...
- 面试官就是要问我SpringMVC的源码,差点顶不住!
<对线面试官>系列目前已经连载22篇啦!有深度风趣的系列! [对线面试官]Java注解 [对线面试官]Java泛型 [对线面试官] Java NIO [对线面试官]Java反射 & ...
随机推荐
- GitHub学习笔记:分支管理
GitHub对于每个开发版本都需要有一个分支,默认的分支是master往往被大家保留下来作为主分支,分支类似于进程的一个指针,往往在master这个稳定的主干版本上分出一个或多个正在开发的分支版本,开 ...
- 使图片自适应div大小
<img src=“” onload="javascript:if(this.height>MaxHeight)this.height=MaxHeight;if(this.wid ...
- DOM4J熟知
什么是解析xml 系统最终会从xml中读取数据. 读取的过程就是解析. CRUD ==> 增删改查 ==> create read update delete ==> 解析指的就是读 ...
- debain 安装nodejs
apt-get update -yapt-get install -y build-essential curl curl -sL https://deb.nodesource.com/setup_8 ...
- activiti工作流框架简介
常见的工作流框架:activiti, JBPM, OSWorkflow activiti框架基于23张基础的表数据, 基于Mybatis操作数据库. JBPM框架基于18张基础的表数据, 基于hibe ...
- Python web(Django)连接Sql server
(开开心心每一天~ ---虫瘾师) Python Web(Django) 与SQL SERVRE的连接----Come QQ群:607021567(里面有很多开源代码和资料,并且python的游戏也有 ...
- SSL WSS HTTPS
SSLSSL(Secure Socket Layer,安全套接层) 简单来说是一种加密技术, 通过它, 我们可以在通信的双方上建立一个安全的通信链路, 因此数据交互的双方可以安全地通信, 而不需要担心 ...
- 1.用互联网的产品思维打造一本app后端的书
刚刚接触app后端,是做完adidas中国的官方商城的时候,那时不清楚app后端应该怎么架构,只能摸着石头过河,网络上只有一些零散的资料,遇到问题,只能不断地搜索,思考,务必找到解决问题的方法. 在从 ...
- testng增加失败重跑机制
注: 以下内容引自 http://www.yeetrack.com/?p=1015 testng增加失败重跑机制 Posted on 2014 年 10 月 31 日 使用Testng框架搭建自动测试 ...
- BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS
BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS 题意: 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p, ...