Description

Input

第一行一个整数N(N<=100),表示玩了N次超级麻将。 接下来N行,每行100个数a1..a100,描述每次玩牌手中各种牌的数量。ai表示数字为i的牌有ai张。(0<=ai<=100)

Output

输出N行,若胡了则输出Yes,否则输出No,注意区分Yes,No的大小写!

Sample Input

3
2 4 0 0 0 0 0 …… 0(一共98个0)
2 4 2 0 0 0 0 …… 0(一共97个0)
2 3 2 0 0 0 0 …… 0(一共97个0)

Sample Output

Yes
Yes
No

题解

这道题题解很多都是用贪心+$Hash$搜索做的,其实$DP$也可以解决这道题。

我们考虑选取麻将的先后是不互相影响的。且怎么选当前牌只会影响其相邻的几张牌,我们将这些影响的状态放入方程中,保证无后效性。

令: $f[i][j][k][0/1]$ 表示“择第 $i$ 号牌时,第 $i-1$ 号牌要打出 $j$ 张,第 $i$ 号牌要打出 $k$ 张,之前选的所有牌是否( $0/1$ )选择了将(对子)”是否可行。

于是就有转移方程:

  1. 考虑选这i号牌做将(对子):

    if (k>) f[i][j][k][]|=f[i][j][k-][];
  2. 考虑i号牌碰(三张相同):
    if (k>) f[i][j][k][]|=f[i][j][k-][],f[i][j][k][]|=f[i][j][k-][];
  3. 考虑i号牌杠(四张相同):
    if (k>) f[i][j][k][]|=f[i][j][k-][],f[i][j][k][]|=f[i][j][k-][];
  4. 考虑i-2,i-1,i三张牌吃(三个连续数字):
    if (j>=k&&a[i-]>=k) f[i][j][k][]|=f[i-][a[i-]-k][j-k][],f[i][j][k][]|=f[i-][a[i-]-k][j-k][];

最后结果为$f[100][a[99]][a[100]][1]$。

附的代码有个玄学的写法:当$i==1$时,$a[i-2]$越界?我也不知道它访问到哪去了,但$AC$了就苟活着吧。

人生处处是惊喜...难道不是吗?

 #include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<queue>
#include<stack>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std; int n,a[];
bool f[][][][]; int main()
{
scanf("%d",&n);
while (n--)
{
memset(f,,sizeof(f));
for (RE int i=;i<=;i++) scanf("%d",&a[i]);
f[][][][]=;
for (RE int i=;i<=;i++)
for (RE int j=;j<=a[i-];j++)
for (RE int k=;k<=a[i];k++)
{
if (k>) f[i][j][k][]|=f[i][j][k-][];
if (k>) f[i][j][k][]|=f[i][j][k-][],f[i][j][k][]|=f[i][j][k-][];
if (k>) f[i][j][k][]|=f[i][j][k-][],f[i][j][k][]|=f[i][j][k-][];
if (j>=k&&a[i-]>=k) f[i][j][k][]|=f[i-][a[i-]-k][j-k][],f[i][j][k][]|=f[i-][a[i-]-k][j-k][];
}
printf(f[][a[]][a[]][] ? "Yes\n":"No\n");
}
return ;
}

[ZJOI 2006]超级麻将的更多相关文章

  1. 洛谷P2593 [ ZJOI 2006 ] 超级麻将 —— DP

    题目:https://www.luogu.org/problemnew/show/P2593 DP的话,考虑到当前这一位只跟前两位有关,所以记录一下这3位的状态就行: 于是一开始记录的第 i 位,i- ...

  2. [ZJOI2006]超级麻将

    题目描述 很多人都知道玩麻将,当然也有人不知道,呵呵,不要紧,我在这里简要地介绍一下麻将规则: 普通麻将有砣.索.万三种类型的牌,每种牌有1~9个数字,其中相同的牌每个有四张,例如1砣~9砣,1索~9 ...

  3. [ZJOI2006]超级麻将(可行性dp)

    题目描述 要判断某人是否胡牌,显然一个弱智的算法就行了,某中学信息学小组超级麻将迷想了想,决定将普通麻将改造成超级麻将. 所谓超级麻将没有了砣.索.万的区分,每种牌上的数字可以是1~100,而每种数字 ...

  4. codevs2464超级麻将

    题目链接http://codevs.cn/problem/2464/ 题目描述 Description 很多人都知道玩麻将,当然也有人不知道,呵呵,不要紧,我在这里简要地介绍一下麻将规则: 普通麻将有 ...

  5. [ZJOI2006]超级麻将(动规)

    题目描述 很多人都知道玩麻将,当然也有人不知道,呵呵,不要紧,我在这里简要地介绍一下麻将规则: 普通麻将有砣.索.万三种类型的牌,每种牌有1~9个数字,其中相同的牌每个有四张,例如1砣~9砣,1索~9 ...

  6. [bzoj1860 ZJOI2006] 超级麻将 (线性dp)

    传送门 Description Input 第一行一个整数N(N<=100),表示玩了N次超级麻将. 接下来N行,每行100个数a1..a100,描述每次玩牌手中各种牌的数量.ai表示数字为i的 ...

  7. BZOJ 2006 超级钢琴(划分树+优先队列)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2006 题意: 给出一个数列A,L,R,构造出一个新的集合,集合中的数字为A中任意连续t( ...

  8. [BZOJ 2006] 超级钢琴

    Link: https://www.lydsy.com/JudgeOnline/problem.php?id=2006 Algorithm: 对于此类区间最值类问题,我们可以通过控制一端不变来寻找当前 ...

  9. bzoj 2006 超级钢琴 —— ST表

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2006 本来应该是可以用主席树,找区间最小值,取出来后再找那段区间的次小值...... 但也可 ...

随机推荐

  1. 福州大学软件1715|W班-助教卞倩虹个人简介

    各位好,我是卞倩虹 本科阶段的专业是网络工程,通过学校的学习我掌握了基础的网络组网配置技术,常常在机房配置路由器和交换机等相关设备.后来我接触了软件编程,在深入了解和学习后编程语言后,自主开发了一些项 ...

  2. velocity学习总结

    什么是velocity velocity是一个基于Java的模板引擎,它可以实现彻底的前后端,前端不允许像jsp那样出现Java代码,而是利用context容器传递变量,在java代码里面我们可以往容 ...

  3. sql2008r2,以前好好可以用的,但装了vs2017后,连接不上了,服务也停了,结果手动也 启动不了, 无法加载或初始化请求的服务提供程

    日志: 2017-12-14 12:33:17.53 服务器 A self-generated certificate was successfully loaded for encryption.2 ...

  4. 在windows环境下安装redis和phpredis的扩展

    在windows环境下安装redis和phpredis的扩展 1.首先配置php: 需要在windows的集成环境中找到php的扩展文件夹,ext,然后在网上寻找自己的php对应的.dll文件 比如说 ...

  5. Spring源码阅读-spring启动

    web.xml web.xml中的spring容器配置 <listener> <listener-class>org.springframework.web.context.C ...

  6. kubernetes 手绘画,先收藏一下

  7. iot前台开发环境:搭建 SpringBoot+angularJs2

    参考网站 Angular 中文官网:https://angular.cn/ 参考代码:https://ng.ant.design/#/components/dropdown  npm install ...

  8. kubernetes入门(10)kubernetes单机安装后 - helloworld

    前言 查看端口是否被监听了 ::netstat -tlp |grep 31002 我是用的yum install etcd kubernetes docker vim, 这样装的是1.5.2,不是最新 ...

  9. Spring知识点回顾(07)事件发布和监听

    Spring知识点回顾(07)事件发布和监听 1.DemoEvent extends ApplicationEvent { public DemoEvent(Object source, String ...

  10. OAuth2.0学习(1-10)新浪开放平台微博认证-手机应用授权和refresh_token刷新access_token

    1.当你是使用微博官方移动SDK的移动应用时,授权返回access_token的同时,还会多返回一个refresh_token: JSON 1 2 3 4 5 6 {     "access ...