Description

「恒逸,你相信灵魂的存在吗?」

郭恒逸和姚枫茜漫步在枫音乡的街道上。望着漫天飞舞的红枫,枫茜突然问出
这样一个问题。 
「相信吧。不然我们是什么,一团肉吗?要不是有灵魂……我们也不可能再见
到你姐姐吧。」 
恒逸给出了一个略微无厘头的回答。枫茜听后笑了笑。 
「那你仔细观察过枫叶吗?」 
说罢,枫茜伸手,接住了一片飘落的枫叶。 
「其实每一片枫叶都是有灵魂的。你看,枫叶上不是有这么多脉络吗?我听说,
枫叶上有一些特殊的位置,就和人的穴位一样。脉络都是连接在这些穴位之间的。
枫树的灵魂流过每片枫叶的根部,沿着这些脉络,慢慢漫进穴位,沁入整片枫叶。
也是因为这个原因,脉络才都是单向的,灵魂可不能倒着溜回来呢。」 
恒逸似懂非懂地点了点头。枫茜接着说了下去。 
「正是因为有了灵魂,每片枫叶才会与众不同。也正是因为有了灵魂,每片枫
叶也都神似其源本的枫树,就连脉络也形成了一棵树的样子。但如果仔细看的话,
会发现,在脉络树之外,还存在其它的非常细的脉络。虽然这些脉络并不在树上,
但他们的方向也同样顺着灵魂流淌的方向,绝不会出现可能使灵魂倒流的回路。」  
恒逸好像突然想到了什么。 
「那这些脉络岂不是可以取代已有的脉络,出现在脉络树上?」 
枫茜闭上了眼睛。 
「是啊,就是这样。脉络树并不是唯一的。只要有一些微小的偏差,脉络树就
可能差之万里,哪怕是在这同一片枫叶上。就像我们的故事,结局也不是唯一的。
只要改变一个小小的选项,故事流程可能就会被彻底扭转。」 
「真是深奥啊……」 
恒逸盯着这片红枫,若有所思地说。枫茜继续说道。 
「还不止如此呢。所有的脉络都不会永恒存在,也不会永恒消失。不管是脉络
树上的脉络,还是之外的细小脉络,都是如此。存在的脉络可能断开消失,消失的
脉络也可能再次连接。万物皆处在永恒的变化之中,人与人之间的羁绊也是。或许
有一天,我们与大家的羁绊也会如同脉络一样,被无情地斩断。或许我们也终将成
为“枫音乡的过客”。或许这一切都会是必然,是枫树的灵魂所决定的……」 
枫茜的眼角泛起了几滴晶莹剔透的泪珠。恒逸看着这样的枫茜,将她抱入怀中。  
「别这样想,枫茜。就算脉络断开,也有可能还会有新的脉络树,也还会与枫
树的根相连。这样的话,我们的羁绊仍然存在,只是稍微绕了一些远路而已。无论
如何,我都不会离开你的。因为你是我穷尽一生所寻找的,我的真恋啊!」 
两人的目光对上了。枫茜幸福地笑了,把头埋进了恒逸的怀抱。从远方山上的
枫林中,传来了枫的声音。 
【问题描述】 
不妨假设枫叶上有 n个穴位,穴位的编号为 1 ~  n。有若干条有向的脉络连接
着这些穴位。穴位和脉络组成一个有向无环图——称之为脉络图(例如图 1),穴
位的编号使得穴位 1 没有从其他穴位连向它的脉络,即穴位 1 只有连出去的脉络;
由上面的故事可知,这个有向无环图存在一个树形子图,它是以穴位 1为根的包含
全部n个穴位的一棵树——称之为脉络树(例如图 2和图 3给出的树都是图1给出
的脉络图的子图);值得注意的是,脉络图中的脉络树方案可能有多种可能性,例
如图2和图 3就是图 1给出的脉络图的两个脉络树方案。 
       
脉络树的形式化定义为:以穴位 r 为根的脉络树由枫叶上全部 n个穴位以及 n
-  1 条脉络组成,脉络树里没有环,亦不存在从一个穴位连向自身的脉络,且对于
枫叶上的每个穴位 s,都存在一条唯一的包含于脉络树内的脉络路径,使得从穴位
r 出发沿着这条路径可以到达穴位 s。 
现在向脉络图添加一条与已有脉络不同的脉络(注意:连接 2个穴位但方向不
同的脉络是不同的脉络,例如从穴位3到4的脉络与从4到3的脉络是不同的脉络,
因此,图 1 中不能添加从 3 到 4 的脉络,但可添加从 4 到 3 的脉络),这条新脉络
可以是从一个穴位连向自身的(例如,图 1 中可添加从 4 到 4 的脉络)。原脉络图
添加这条新脉络后得到的新脉络图可能会出现脉络构成的环。 
请你求出添加了这一条脉络之后的新脉络图的以穴位 1 为根的脉络树方案数。
由于方案可能有太多太多,请输出方案数对 1,000,000,007 取模得到的结果。 

Input

输入文件的第一行包含四个整数 n、m、x和y,依次代表枫叶上的穴位数、脉

络数,以及要添加的脉络是从穴位 x连向穴位y的。 
接下来 m行,每行两个整数,由空格隔开,代表一条脉络。第 i 行的两个整数
为ui和vi,代表第 i 条脉络是从穴位 ui连向穴位vi的。 

Output

输出一行,为添加了从穴位 x连向穴位 y的脉络后,枫叶上以穴位 1 为根的脉

络树的方案数对 1,000,000,007取模得到的结果。 

Sample Input

4 4 4 3
1 2
1 3
2 4
3 2

Sample Output

3

HINT

对于所有测试数据,1 <= n <= 100000,n - 1 <= m <= min(200000, n(n – 1) / 2),

1 <= x, y, ui, vi <= n。

题解

首先我们简化这个问题,考虑一个$DAG$中树形图的个数。

值得注意的是这里有朱刘算法的一个推广:

如果除根节点外每个点都选择一条入边,由于没有环,因此一定会形成一个树形图。

这里简要证明一下:

首先证明这个图是联通的。

采用反证法,假设图不联通,显然原图存在一个子图满足:子图联通,并且子图中边数$w$>点数$u$。

那么这样这个子图的总入度>总点数。那么一定存在一个点入度>$1$。与题设不符,原命题成立。

下证这个连通图满足树形图的性质。

依旧采用反证法,我们假设选择满足题意的边不能够成树形图。那么存在两条不同的路径$S_1$,$S_2$从根节点$1$到达另外一个节点$v$。

假设子图$g(u',w') ⊂$ 原图$G(u,w)$是满足$S_1,S_2 ⊂ g(u',w')$的极小子图。

既然存在两条不同的路径,显然$u' <= w'$。

又由于除根节点外每个点有且仅有一个入边,显然$w' =  u'-1$。矛盾,原命题成立。

由上述结论,显然简化版的问题答案就是:$$ans = \prod_{i=2}^n degree_i(其中degree_i表示节点i的入度)$$

我们再来考虑原问题,现在加上额外的一条边之后,原图可能形成环。再由上面的决策,显然不可行。

我们考虑不合法的情况是什么:显然选边的时候构成环就是不合法的。并且这个环中的一条边肯定是$x \rightarrow y$。

容易得到的结论就是,需要减去的不合法的值就是$$\sum_{S是G中y \rightarrow x的一条路径的点集}\prod_{2\leq j\leq n,j\notin S}degree_j$$

考虑贡献法来计算,用$top-sort-dp$,记$f_i$表示$$\sum_{S是G中y \rightarrow i的一条路径的点集}\prod_{2\leq j\leq n,j\notin S}degree_j$$

$dp$方程就是$$f_i=\frac{\sum_{j\rightarrow i}f_j}{degree_i}$$

初值$$f_y=\frac{\prod_{i=2}^ndegree_i}{degree_y}$$

由于$1$号根节点不选入边,所以$1$号点显然不能构成环。若$y == 1$,显然这条边不可能被选,不用$top-sort-dp$,直接输出原始$ans$即可。

 //It is made by Awson on 2017.12.24
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std;
const int N = ;
const int M = ;
const int MOD = ; int n, m, x, y, u, v;
struct tt {
int to, next;
}edge[M+];
int path[N+], top;
int ans = , degree[N+], in[N+];
int f[N+];
queue<int>Q; int quick_pow(int a, int b) {
int cnt = ;
while (b) {
if (b&) cnt = (LL)cnt*a%MOD;
a = (LL)a*a%MOD;
b >>= ;
}
return cnt;
}
void topsort() {
f[y] = ans;
for (int i = ; i <= n; i++) if (in[i] == ) Q.push(i);
while (!Q.empty()) {
int u = Q.front(); Q.pop();
f[u] = (LL)f[u]*quick_pow(degree[u], MOD-)%MOD;
for (int i = path[u]; i; i = edge[i].next) {
(f[edge[i].to] += f[u]) %= MOD; in[edge[i].to]--;
if (in[edge[i].to] == ) Q.push(edge[i].to);
}
}
}
void add(int u, int v) {
edge[++top].to = v;
edge[top].next = path[u];
path[u] = top;
}
void work() {
scanf("%d%d%d%d", &n, &m, &x, &y);
degree[y]++;
for (int i = ; i <= m; i++) {
scanf("%d%d", &u, &v);
add(u, v); degree[v]++;
}
for (int i = ; i <= n; i++) ans = (LL)ans*degree[i]%MOD;
for (int i = ; i <= n; i++) in[i] = degree[i]; in[y]--;
if (y != ) topsort();
printf("%d\n", (ans-f[x]+MOD)%MOD);
}
int main() {
work();
return ;
}

[HNOI 2015]落忆枫音的更多相关文章

  1. 【BZOJ】【4011】【HNOI2015】落忆枫音

    拓扑排序+DP 题解:http://blog.csdn.net/PoPoQQQ/article/details/45194103 http://www.cnblogs.com/mmlz/p/44487 ...

  2. BZOJ 4011: [HNOI2015]落忆枫音( dp )

    DAG上有个环, 先按DAG计数(所有节点入度的乘积), 然后再减去按拓扑序dp求出的不合法方案数(形成环的方案数). ---------------------------------------- ...

  3. bzoj4011[HNOI2015]落忆枫音 dp+容斥(?)

    4011: [HNOI2015]落忆枫音 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1125  Solved: 603[Submit][Statu ...

  4. [HNOI2015]落忆枫音 解题报告

    [HNOI2015]落忆枫音 设每个点入度是\(d_i\),如果不加边,答案是 \[ \prod_{i=2}^nd_i \] 意思是我们给每个点选一个父亲 然后我们加了一条边,最后如果还这么统计,那么 ...

  5. 4011: [HNOI2015]落忆枫音

    4011: [HNOI2015]落忆枫音 链接 分析: 原来是一个DAG,考虑如何构造树形图,显然可以给每个点找一个父节点,所以树形图的个数就是$\prod\limits_u deg[u]$. 那么加 ...

  6. BZOJ 4011 【HNOI2015】 落忆枫音

    题目链接:落忆枫音 以下内容参考PoPoQQQ大爷的博客 首先我们先来考虑一下如果没有新加入的那条边,答案怎么算. 由于这是一个\(DAG\),所以我们给每个点随便选择一条入边,最后一定会构成一个树形 ...

  7. 【BZOJ4011】【HNOI2015】落忆枫音(动态规划)

    [BZOJ4011][HNOI2015]落忆枫音(动态规划) 题面 BZOJ 洛谷 Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜 ...

  8. BZOJ4011: [HNOI2015]落忆枫音

    Description 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出 这样一个问题.  「相信吧.不然我们是什么,一团肉吗?要不是有灵魂……我们 ...

  9. [HNOI2015]落忆枫音

    题目描述 「恒逸,你相信灵魂的存在吗?」 郭恒逸和姚枫茜漫步在枫音乡的街道上.望着漫天飞舞的红枫,枫茜突然问出这样一个问题. 「相信吧.不然我们是什么,一团肉吗?要不是有灵魂......我们也不可能再 ...

随机推荐

  1. java中的异常以及 try catch finally以及finally的执行顺序

    java中的 try.catch.finally及finally执行顺序详解: 1.首相简单介绍一下异常以及异常的运行情况: 在Java中异常的继承主要有两个: Error和Exception 这两个 ...

  2. 听翁恺老师mooc笔记(4)--指针的应用场景

    指针应用场景一:交换两个变量的值 在学习函数时,交换两个数的值,做一个swap函数,传递值进去,也可以将两个值交换过来,没问题,可是离开swap就没有用了,为什么?因为传进去的是两个值. #inclu ...

  3. 数据结构——线性表——队列(queue)

    队列也是一种特殊的线性表,它的特点是先入先出(FIFO,即first in first out).它的意思也很直观,想象一下排队买票,先排的人先买(插队是不对的,所以别去想).它也是很常用的数据结构, ...

  4. 团队作业7——第二次项目冲刺(Beta版本12.04)

    1.当天站立式会议照片 本次会议内容:1:每个人汇报自己完成的工作.2:组长分配各自要完成的任务. 2.每个人的工作 黄进勇:项目整合,后台代码. 李勇:前台界面优化. 何忠鹏:数据库模块. 郑希彬: ...

  5. SQL的介绍及MySQL的安装

    基础篇 - SQL 介绍及 MySQL 安装               SQL的介绍及MySQL的安装 课程介绍 本课程为实验楼提供的 MySQL 实验教程,所有的步骤都在实验楼在线实验环境中完成, ...

  6. 201621123027 《Java程序设计》第1周学习总结

    01621123027 <Java程序设计>第1周学习总结 1.本周学习总结 关键词:总概.承接.面向对象化 ​ 我认为第一周的Java学习是一些总结概括性质的内容,在比较联系之前学习过的 ...

  7. vue jquery js 获取当前时间本周的第一天 和 本月的第一天

    交互的时候传输数据 后台要求这样的数据 直接上代码 这是我找度姨要的  附上链接  https://www.cnblogs.com/wasabii/p/7756560.html 它里面有本季度第一天  ...

  8. Python-socket网络编程-Day8

    目录Day8-Python socket 11.Socket 11.1.socket和file的区别: 11.2.WEB服务应用: 21.3.更多功能 21.4.socket方法: 41.5. 服务端 ...

  9. XML之XPath

    1.在 XPath 中,有七种类型的节点:元素.属性.文本.命名空间.处理指令.注释以及文档节点(或称为根节点). 1.1 XPath 术语 节点(Node) 在 XPath 中,有七种类型的节点:元 ...

  10. 访问器属性:setter()函数和getter()函数

    1.干嘛用的? getter()函数:返回有效的值 setter()函数:调用它并传入数据,这个函数决定如何处理数据 2.具备哪些属性?如何定义? configurable(默认为true),enum ...