题意:

  求解合为 y 的总体 gcd 为 x 的正整数非空序列个数。

解法:

  特判一下后,原问题等价于合为 s = y/x 的整体gcd为1的正整数序列个数。

  1.$ans = \sum_{\sum{x_i} = s}{ [(x_1,...,x_n) = 1] } = \sum_{d|s}{\mu(s/d) \sum{[x_1+x_2+...+x_n = d]}} = \sum_{d|s}{\mu(s/d) 2^{d-1}}$

  2.记$f(m) = \sum_{\sum{x_i} = m}{ [(x_1,...,x_n) = 1] }$,则$\sum_{d|m}{f(m)} = 2^{m-1}$,考虑记忆化 + 递归。

  两者时间复杂度皆为$O(n^{2/3})$

Unusual Sequences的更多相关文章

  1. Codeforces 900D Unusual Sequences 容斥原理

    题目链接:900D  Unusual Sequences 题意: 给出两个数N,M.让你求数列(和为M,gcd为N)的个数. 题解: 首先,比较容易发现的是M%N如果不为零,那么一定不能构成这样的序列 ...

  2. 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)

    [CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...

  3. CodeForces - 900D: Unusual Sequences (容斥&莫比乌斯&组合数学)

    Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers such ...

  4. CodeForces 900D Unusual Sequences

    题目链接: https://codeforces.com/contest/900/problem/D 题意 假设有distinct 正整数序列{a1,a2,,,an},满足gcd(a1, a2, .. ...

  5. cf900D. Unusual Sequences(容斥 莫比乌斯反演)

    题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...

  6. Codeforces 900D Unusual Sequences:记忆化搜索

    题目链接:http://codeforces.com/problemset/problem/900/D 题意: 给定x,y,问你有多少个数列a满足gcd(a[i]) = x 且 ∑(a[i]) = y ...

  7. Codeforces Round #450 (Div. 2) D.Unusual Sequences (数学)

    题目链接: http://codeforces.com/contest/900/problem/D 题意: 给你 \(x\) 和 \(y\),让你求同时满足这两个条件的序列的个数: \(a_1, a_ ...

  8. CF 900D Unusual Sequences

    题目链接 \(Description\) 给定\(x,y\),求有多少个数列满足\(gcd(a_i)=x且\sum a_i=y\).答案对\(10^9+7\)取模. \(1≤x,y≤10^9\) \( ...

  9. 【CF900D】Unusual Sequences

    题目 智力下降严重 显然要反演了呀 首先必须满足\(x|y\),否则答案是\(0\) 我们枚举这个数列的\(gcd\)是\(d\)或者\(d\)的倍数 于是答案就是 \[\sum_{x|d}[d|y] ...

随机推荐

  1. java 类中定义接口的调用方法

    public class Human { public interface MyAction { public void getPower(); } } public class Test{ publ ...

  2. Javascript函数的参数arguments

    arguments Description 在所有的函数中有一个arguments对象,arguments对象指向函数的参数,arguments object is an Array-like obj ...

  3. 之前收集的一波MaterialDesign库

    material https://github.com/rey5137/material MaterialDesignLibrary md控件库,可兼容到2.2. https://github.com ...

  4. Codeforces 453B Little Pony and Harmony Chest:状压dp【记录转移路径】

    题目链接:http://codeforces.com/problemset/problem/453/B 题意: 给你一个长度为n的数列a,让你构造一个长度为n的数列b. 在保证b中任意两数gcd都为1 ...

  5. for循环中删除map中的元素,valgrind检测提示error:Invalid read of size 8

    #include <iostream> #include <map> using namespace std; class A { public: typedef std::m ...

  6. UTF-8 delphi 函数

    unit util_utf8;    interface    uses Windows;    type   UTF8String = AnsiString;      function AnsiT ...

  7. (转)JSP九大内置对象

    原文出处:http://www.importnew.com/19128.html 虽然现在基本上使用SpringMVC+AJAX进行开发了Java Web了,但是还是很有必要了解一下JSP的九大内置对 ...

  8. stl_slist.h

    stl_slist.h // Filename: stl_slist.h // Comment By: 凝霜 // E-mail: mdl2009@vip.qq.com // Blog: http:/ ...

  9. freeMarker(三)——模板开发指南之数值、类型

    学习笔记,选自freeMarker中文文档,译自 Email: ddekany at users.sourceforge.net 模板开发指南——数值.类型 1.基本内容 1.1 什么是数值? 正如你 ...

  10. Agc003_E Sequential operations on Sequence

    传送门 题目大意 $1,2...n,n$个数从小到大排列,有$m$此操作,每次操作给定一个参数$x$,将当且数列作为循环节无限地展开下去,再取前$x$个作为新的数列,求最终的数列每个数出现的次数. $ ...