两种情况下不走map-reduce:

1. where ds >' ' //ds 是partition

2. select * from table //后面没有查询条件,什么都没有

1.建表

CREATE TABLE sal(
id INT,
name STRING,
salary INT
)
partitioned by (city string)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

1.1 修改表及属性

#把id,name以外的列删除
alter table sal replace columns (id int, name string);
#增加列
alter table sal add columns (remark string);
#修改column
ALTER TABLE table_name
CHANGE col_old_name col_new_name
column_type; ALTER TABLE sal CHANGE remark city string;

2.导入数据

load data local inpath '/home/hadoop/in/mytable' overwrite into table sal;
1 zuansun 3000 none
2 zuansu2 4000 none
3 zuansu3 3000 none
4 zuansu4 4000 none
5 zuansu5 3000 none
6 zuansu6 4000 none
7 zuansu7 3000 none
8 zuansu8 4000 none
9 zuansu9 10000 none
10 zuansu10 20000 none
11 zuansu11 15000 none
12 zuansu12 25000 none

3.嵌套查询

from (select * from sal) e select e.id,e.name,e.salary  where e.salary>3000;
#case when
select id,name,
case
when salary<10000 then '屌丝'
when salary>=10000 and salary<20000 then '中下等'
when salary>=20000 and salary<50000 then '高帅富'
else '外星人'
end as salarylevel
from sal;

4.group by

select remark,sum(salary) from sal group by remark;

5.动态分区

5.1 创建临时表

CREATE TABLE sal_tmp(
id INT,
name STRING,
salary INT,
city string
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
STORED AS TEXTFILE;

5.2将数据导入到临时表中

load data local inpath '/home/hadoop/in/mytable' overwrite into table sal_tmp;

5.3 操作的配置

set hive.exec.dynamic.partition=true; // 允许动态分区
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.exec.dynamic.partitions.pernode=50000;
set hive.exec.dynamic.partitions.partitions=50000;
set hive.exec.max.created.files=500000;
set mapred.reduce.tasks =20000; //每个任务默认的reduce数目
set hive.merge.mapfiles=true; //在Map-only的任务结束时合并小文件

5.4附partition相关参数:

hive.exec.dynamic.partition(缺省false): 设置为true允许使用dynamic partition

hive.exec.dynamic.partition.mode(缺省strick):设置dynamic partition模式(nostrict允许所有partition列都为dynamic partition,strict不允许)

hive.exec.max.dynamic.partitions.pernode (缺省100):每一个mapreduce job允许创建的分区的最大数量,如果超过了这个数量就会报错

hive.exec.max.dynamic.partitions (缺省1000):一个dml语句允许创建的所有分区的最大数量

hive.exec.max.created.files (缺省100000):所有的mapreduce job允许创建的文件的最大数量









5.5

insert into table sal partition (city) select * from sal_tmp;

6. join操作

#建表
create table a(id int,gender string)
row format delimited fields terminated by '\t' stored as textfile;
#加载数据
load data local inpath '/home/hadoop/in/a' overwrite into table a;
#内连接查询
select sal.id,sal.name,sal.salary,sal.city,a.gender from sal join a on(sal.id=a.id);
#左外连接查询
select sal.id,sal.name,sal.salary,sal.city,a.gender from sal left outer join a on(sal.id=a.id);

7.创建索引

create index a_index on table a(id) AS  'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler' WITH DEFERRED REBUILD ;     

8.桶

#临时表
create table tb_tmp(id int,age int, name string ,timeflag bigint) row format delimited fields terminated by ',';
#带桶的表,4个桶
create table tb_stu(id int,age int, name string,timeflag bigint) clustered by (id) sorted by (age) into 4 buckets row format delimited fields terminated by ',';
#加载数据到临时表
load data local inpath '/home/hadoop/in/tb_tmp' overwrite into table tb_tmp; 1,20,zxm,20140330
2,21,ljz,20140330
3,19,cds,20140330
4,18,mac,20140330
5,22,android,20140330
6,23,symbian,20140330
7,25,wp,20140330
8,20,cxd,20140330
9,21,fvd,20140330
10,19,cvb,20140330
11,18,erd,20140330
12,22,nid,20140330
13,23,fvd,20140330
14,19,cvb,20140330
15,18,e33,20140330
16,22,nid,20140330
#设置执行桶的属性
set hive.enforce.bucketing = true;
#插入到tb_stu表
insert into table tb_stu select * from tb_tmp;
#抽样
select * from tb_stu tablesample(bucket 1 out of 4 on id);
注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y),相当于以下语句:
SELECT * FROM numbersflat WHERE number % y = x-1;

9.RCfile

#rcfile 格式表
create table tb_rc(id int,age int, name string ,timeflag bigint) row format delimited fields terminated by ',' stored as rcfile;
#插入数据,上表中已经有tb_tmp表,所以直接插入数据即可
insert into table tb_rc select * from tb_tmp;

10.分隔符的多样化(配合正则表达式使用)

#cat /tmp/liuxiaowen/1.txt

000377201207221125^^APPLE IPHONE 4S^^2
132288201210331629^^THINKING IN JAVA^^1
132288201210331629^^THIN ssss^^1111
132288201210331629^^THdd dd ddJAVA^^10 add jar /opt/app/hive-0.7.0-rc1/lib/hive-contrib-0.7.0.jar ; create external table tt(times string,
product_name string,
sale_num string
) ROW FORMAT
SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
WITH SERDEPROPERTIES
( 'input.regex' = '([^^]*)\\^\\^([^^]*)\\^\\^([^^]*)',
'output.format.string' = '%1$s %2$s %3$s')
STORED AS TEXTFILE; load data local inpath '/home/hadoop/in/tt' overwrite into table tt; hive> select product_name from tt; APPLE IPHONE 4S
THINKING IN JAVA
THIN ssss
THdd dd ddJAVA

11.更加复杂的数据类型

11.1 array

cat login_array.txt
192.168.1.1,3105007010|3105007011|3105007012
192.168.1.2,3105007020|3105007021|3105007022 CREATE TABLE login_array (
ip STRING,
uid array<BIGINT>
)
PARTITIONED BY (dt STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY '|'
STORED AS TEXTFILE;
加载数据到hive表
LOAD DATA LOCAL INPATH '/home/hadoop/in/login_array' OVERWRITE INTO TABLE login_array PARTITION (dt='20130101');
#查看数据
select * from login_array;
192.168.1.1 [3105007010,3105007011,3105007012] 20130101
192.168.1.2 [3105007020,3105007021,3105007022] 20130101
select ip,uid[0] from login_array where dt='20130101'; --使用下标访问数组
192.168.1.1 3105007010
192.168.1.2 3105007020
select ip,size(uid) from login_array where dt='20130101'; #查看数组长度
192.168.1.1 3
192.168.1.2 3
select * from login_array where array_contains(uid,3105007010);#数组查找
192.168.1.1 [3105007010,3105007011,3105007012] 20130101

11.2 使用Map

cat map_test_raw:
2014-03-03 12:22:34#127.0.0.1#get#amap#src=123&code=456&cookie=789#status=success&time=2s
2014-03-03 11:22:34#127.0.0.1#get#autonavi#src=123&code=456#status=success&time=2s&cookie=789
#创建表
create external table map_test_raw(ts String,ip String,type String,logtype String,request Map<String,String>,response Map<String,String>)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '#'
COLLECTION ITEMS TERMINATED BY '&'
MAP KEYS TERMINATED BY '='
stored as textfile;
LOAD DATA LOCAL INPATH '/home/hadoop/in/map_test_raw' OVERWRITE INTO TABLE map_test_raw;
#查看数据
select * from map_test_raw;
2014-03-03 12:22:34 127.0.0.1 get amap {"src":"123","code":"456","cookie":"789"} {"status":"success","time":"2s"}
2014-03-03 11:22:34 127.0.0.1 get autonavi {"src":"123","code":"456"} {"status":"success","time":"2s","cookie":"789"}

11.3 使用struct

# cat login_struct.txt
192.168.1.1,zhangsan:40
192.168.1.1,lisi:41
192.168.1.1,gavin:42
192.168.1.1,wangwu:43
192.168.1.1,xiaoming:44
192.168.1.1,xiaojun:45
# 建表
CREATE TABLE login_struct (
ip STRING,
user struct<name:string,age:int>
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
COLLECTION ITEMS TERMINATED BY ':'
STORED AS TEXTFILE;
#导入数据
LOAD DATA LOCAL INPATH '/home/hadoop/in/login_struct' OVERWRITE INTO TABLE login_struct;
#查看数据
select ip,user from login_struct; 192.168.1.1 {"name":"zhangsan","age":40}
192.168.1.1 {"name":"lisi","age":41}
192.168.1.1 {"name":"gavin","age":42}
192.168.1.1 {"name":"wangwu","age":43}
192.168.1.1 {"name":"xiaoming","age":44}
192.168.1.1 {"name":"xiaojun","age":45}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Hive 进阶的更多相关文章

  1. Hive进阶(下)

    Hive进阶(下) Hive进阶(下) Hive的表连接 等值连接 查询员工信息:员工号.姓名.月薪.部门名称 1.select e.empno,e.ename,e.sal,d.dname2.from ...

  2. Hive进阶(上)

    Hive进阶(上) Hive进阶(上) 执行数据导入 使用Load语句 语法: 1.LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE ...

  3. Hive学习之六 《Hive进阶— —hive jdbc》 详解

    接Hive学习五 http://www.cnblogs.com/invban/p/5331159.html 一.配置环境变量 hive jdbc的开发,在开发环境中,配置Java环境变量 修改/etc ...

  4. Hive学习之五 《Hive进阶—UDF操作案例》 详解

    hive—UDF操作 udf的操作过程: 在HIVE会话中add 自定义函数的jar文件,然后创建function,继而使用函数. 下面就以下面课题为例: 课题:统计每个活动的PV和UV 一.Java ...

  5. hive 进阶笔记

    -- mysql方式 create table account_channel(account_ String,channel_ String) as select a.account,b.chann ...

  6. Hive进阶_汇总

    =========================================================================== 第2章 Hive数据的导入 使用Load语句执行 ...

  7. Hive进阶_开发Hive的自定义函数

    Hive中的自定义函数简介 (1) 在类中创建自定义函数.自定义UDF需要继承'org.apache.hadoop.hive.ql.exec.UDF',实现evaluate函数,evaluate函数支 ...

  8. Hive进阶_Hive的客户端操作

    启动远程客户端 # hive --service hiveserver2获取连接-〉创建运行环境-〉执行HQL-〉处理结果-〉释放资源 工具类 package demo.utils; import j ...

  9. Hive进阶_Hive的子查询

    - 集合中如果含null数据,不可使用not in, 可以使用in- hive只支持where和from子句中的子查询- 主查询和自查询可以不是同一张表 select e.ename from emp ...

随机推荐

  1. 用Java实现断点续传的基本思路和代码

    用Java实现断点续传的基本思路和代码   URL url = new URL(http://www.oschina.net/no-exist.zip); HttpURLConnection http ...

  2. Data Structure Binary Tree: Populate Inorder Successor for all nodes

    http://www.geeksforgeeks.org/populate-inorder-successor-for-all-nodes/ #include <iostream> #in ...

  3. ubuntu中文语言环境下把系统中文文件夹更改回英文文件夹

    更改系统语言为“汉语(中国)”后,在主文件夹下的系统默认文件夹名称也被改成了中文, 这样的话,使用命令行终端进行入文件夹很不方便,所以可以把文件夹名称从中文改回英文. 打开终端,在终端中输入命令:ex ...

  4. 单链表(C语言实现)

    链表结构: SList.h //-------------------------------------------------------------------------- /* **功能:应 ...

  5. chattr与lsattr命令详解

    PS:有时候你发现用root权限都不能修改某个文件,大部分原因是曾经用chattr命令锁定该文件了.chattr命令的作用很大,其中一些功能是由Linux内核版本来支持的,不过现在生产绝大部分跑的li ...

  6. Unity Json解析IPA

    今天看到一个unity 自带的解析json的IPA,感觉比litjson好用很多,废话不多,上代码 using System.Collections; using System.Collections ...

  7. EntityFramework 学习 一 实体类型

    我们为已存在的数据库创建EDM,EDM包含与数据库中表对应的实体.EF中有两种实体类型 POCO entity dynamic proxy entity POCO Entity (Plain Old ...

  8. JavaScript 练习,变量,数组,函数,对象, with for 语句

    JavaScript 基于对象 和 事件驱动!!! <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...

  9. 六 Django框架,models.py模块,数据库操作——链表结构,一对多、一对一、多对多

    链表操作 链表,就是一张表的外键字段,连接另外一张表的主键字段 一对多 models.ForeignKey()外键字段一对多,值是要外键的表类 from __future__ import unico ...

  10. UI层自动化测试介绍

    UI指的是用户可以用肉眼可以看到的页面. UI层自动化测试的原理.不论是web端还是移动端,原理都是一样的,就是基于页面元素的识别和定位来进行模拟用户行为. 首先识别到某个元素,比如一个按钮,然后定义 ...