在spark中,什么情况下会发生shuffle?

reduceByKey,groupByKey,sortByKey,countByKey,join,cogroup等操作。

默认的shuffle操作的原理剖析

  假设有一个节点上面运行了4个 ShuffleMapTask,然后这个节点上只有2个 cpu core。假如有另外一台节点,上面也运行了4个ResultTask,现在呢,正等着要去 ShuffleMapTask 的输出数据来完成比如 reduceByKey 等操作。

  每个 ShuffleMapTask 都会为 ReduceTask 创建一份 bucket 缓存,以及对应的 ShuffleBlockFile 磁盘文件。

  ShuffleMapTask 的输出会作为 MapStatus,发送到 DAGScheduler 的 MapOutputTrackerMaster 中。MapStatus 包含了每个 ResultTask 要拉取的数据的大小。

  每个 ResultTask 会用 BlockStoreShuffleFetcher 去 MapOutputTrackerMaster 获取自己要拉取数据的信息,然后底层通过 BlockManager 将数据拉取过来。

  每个 ResultTask 拉取过来的数据,其实就会组成一个内部的RDD,叫ShuffleRDD;优先放入内存,其次内存不够,那么写入磁盘。

  然后每个ResultTask针对数据进行聚合,最后生成MapPartitionsRDD,也就是我们执行reduceByKey等操作希望获得的那个RDD。map端的数据,可以理解为Shuffle的第一个RDD,MapPartitionsRDD。所以假设如果有100个map task ,100个 reduce task,本地磁盘要产生10000个文件,磁盘IO过多,影响性能。

Spark Shuffle操作的两个特点

第一个特点,就是说,在 Spark 早期版本中,那个 bucket 缓存是非常重要的;因为需要将一个 ShuffleMapTask 所有的数据都写入内存缓存之后,才会刷新到磁盘。但是这就有一个问题,如果map side 数据过多,那么很容易造成内存溢出。所以spark在新版本中。优化了默认那个内存缓存是100kb,然后呢,写入一点数据达到刷新的阈值之后,就会将数据一点一点地刷新到磁盘。

  这种操作的优点是不容易发生内存溢出。缺点在于,如果内存缓存过小的话,那么可能发生过多的磁盘 io 操作。所以,这里的内存缓存大小,是可以根据实际的业务情况进行优化的。

第二个特点,与MapReduce完全不一样的是,MapReduce 它必须将所有的数据都写入本地磁盘文件以后,才能启动reduce 操作,来拉取数据。为什么?因为mapreduce 要实现默认的根据key 排序!所以要排序,肯定得写完所有数据,才能排序,然后reduce来拉取。

  但spark不需要,spark默认的情况下,是不会对数据进行排序的。因此ShuffleMapTask 每写入一点数据,ResultTask 就可以拉取一点数据,然后在本地执行我们定义的聚合函数和算子,进行计算。

  spark这种机制的好处在于,速度比mapreduce 快多了。但是也有一个问题,mapreduce 提供的reduce,是可以处理每个key 对应的 value上的,很方便。但是spark 中,由于这种实时拉取的机制,因此提供不了直接处理 key 对应的 value 的算子, 只能通过 groupByKey,先shuffle,有一个MapPartitionsRDD,然后用map 算子来处理每个 key 对应的 values。就没有maprece 的计算模型那么方便。

Spark- Spark普通Shuffle操作的原理剖析的更多相关文章

  1. 大话Spark(6)-源码之SparkContext原理剖析

    SparkContext是整个spark程序通往集群的唯一通道,他是程序的起点,也是程序的终点. 我们的每一个spark个程序都需要先创建SparkContext,接着调用SparkContext的方 ...

  2. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  3. Spark Scheduler内部原理剖析

    文章正文 通过文章“Spark 核心概念RDD”我们知道,Spark的核心是根据RDD来实现的,Spark Scheduler则为Spark核心实现的重要一环,其作用就是任务调度.Spark的任务调度 ...

  4. 46、Spark SQL工作原理剖析以及性能优化

    一.工作原理剖析 1.图解 二.性能优化 1.设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf()) 2.在Hive数据 ...

  5. 研究一下Spark Hash Shuffle 和 SortShuffle 原理机制

    研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shuffle 和 SortShuffle 原理机制研究一下Spark Hash Shu ...

  6. 66、Spark Streaming:数据处理原理剖析与源码分析(block与batch关系透彻解析)

    一.数据处理原理剖析 每隔我们设置的batch interval 的time,就去找ReceiverTracker,将其中的,从上次划分batch的时间,到目前为止的这个batch interval ...

  7. Spark剖析-宽依赖与窄依赖、基于yarn的两种提交模式、sparkcontext原理剖析

    Spark剖析-宽依赖与窄依赖.基于yarn的两种提交模式.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 2.1 Standalne-client 2. ...

  8. spark性能调优(二) 彻底解密spark的Hash Shuffle

    装载:http://www.cnblogs.com/jcchoiling/p/6431969.html 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是 Sort-B ...

  9. Spark MLlib LDA 基于GraphX实现原理及源代码分析

    LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类.眼下,广泛运用在文本主题聚类中. LDA的开源实现有 ...

随机推荐

  1. mac Xvim 语法高亮

    步骤1: cp /usr/share/vim/vimrc ~/.vimrc 先复制一份vim配置模板到个人目录下 注:redhat 改成 cp /etc/vimrc ~/.vimrc 步骤2: vi ...

  2. js 判断 IE 浏览器

    遇到一些IE兼容问题,可以考虑在该浏览器环境下,用js控制样式,以下是判断IE版本的js代码 var browser=navigator.appName var b_version=navigator ...

  3. 用Jekyll搭建的Github Pages个人博客实践2

    依稀记得之前访问喵神的博客很有feel 感谢喵神git上的提供的主题Vno-Jekyll. 创建代码仓库(你的用户名).github.io 将主题Vno-Jekyll下载到本地,解压到刚刚的代码仓库目 ...

  4. 【文献阅读】Perceptual Generative Adversarial Networks for Small Object Detection –CVPR-2017

    Perceptual Generative Adversarial Networks for Small Object Detection 2017CVPR 新鲜出炉的paper,这是针对small ...

  5. 转载 jenkins执行selenium 测试 浏览器不显示解决方法

    原文地址: http://blog.csdn.net/achang21/article/details/45096003 The web browser doesn't show while run ...

  6. 第6章 网页解析器和BeautifulSoup第三方插件

    第一节 网页解析器简介作用:从网页中提取有价值数据的工具python有哪几种网页解析器?其实就是解析HTML页面正则表达式:模糊匹配结构化解析-DOM树:html.parserBeautiful So ...

  7. gridControl使用集锦

    1.grid控件默认选择一行时,focused的cell并不是蓝色的,而是白色的 要想实现一次选择一行全都是蓝色的只要改一个属性就可以了 this.gridView1.OptionsSelection ...

  8. Java获取字符串的CRC8校验码(由C程序的代码修改为了Java代码)

    CRC8算法请百度,我也不懂,这里只是把自己运行成功的结构贴出来了.方法CRC8_Tab这里没有处理,因为我的程序中没有用到. package com.crc; public class CCRC8_ ...

  9. Largest Rectangle in a Histogram (最大子矩阵)

    hdu 1506 A histogram is a polygon composed of a sequence of rectangles aligned at a common base line ...

  10. hdu 5969 最大的位或

    最大的位或 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...