link

\(\sum_{i=1}^n\sum_{j=1}^m[s(\gcd(i,j))\le a]s(\gcd(i,j))\)

\(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_{i=1}^n\sum_{j=1}^m[\gcd(i,j)=p]\)

\(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}[\gcd(i,j)=1]\)

\(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_{i=1}^{n/p}\sum_{j=1}^{m/p}\sum_{d|i,d|j}\mu(d)\)

\(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_{d=1}^n\mu(d)\lfloor\frac n{pd}\rfloor\lfloor\frac m{pd}\rfloor\)

\(=\sum_{q=1}^n\sum_{p|q}s(p)[s(p)\le a]\mu(\frac q p)\lfloor\frac n{pd}\rfloor\lfloor\frac m{pd}\rfloor\)

离线,将询问按照\(a\)排序

由于前面最多只有nlogn个,可以线性筛之后都存一下,存一个三元组(p, s(p), 那一大坨子),按照s(p)排序

离线处理询问,往树状数组里插值就行了,每次相当于在树状数组里查询前缀和之差,和普通的整除分块没什么太大的区别

#include <cstdio>
#include <algorithm>
#include <utility>
using namespace std; struct query
{
int n, m, a, id, ans;
} ask[20010]; struct info
{
int val, id;
} inf[100010]; int q;
bool vis[100010];
int d[100010], d1[100010], mu[100010], prime[100000], tot, fuck = 100000; int c[100010]; void chenge(int x, int y)
{
for (int i = x; i <= fuck; i += i & -i) c[i] += y;
} int getsum(int x)
{
int ans = 0;
for (int i = x; i > 0; i -= i & -i) ans += c[i];
return ans;
} void add(int p)
{
for (int q = p, dd = 1; q <= fuck; q += p, dd++)
chenge(q, d[p] * mu[dd]);
} int main()
{
scanf("%d", &q);
for (int i = 1; i <= q; i++)
{
scanf("%d%d%d", &ask[i].n, &ask[i].m, &ask[i].a);
ask[i].id = i;
}
sort(ask + 1, ask + 1 + q, [](const query &a, const query &b) { return a.a < b.a; }); mu[1] = d[1] = d1[1] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, mu[i] = -1, d[i] = d1[i] = i + 1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0)
{
d1[i * prime[j]] = d1[i] * prime[j] + 1;
d[i *prime[j]] = d[i] / d1[i] * d1[i * prime[j]];
break;
}
d1[i * prime[j]] = prime[j] + 1;
d[i * prime[j]] = d[i] * (prime[j] + 1);
mu[i * prime[j]] = -mu[i];
}
} for (int i = 1; i <= fuck; i++)
inf[i].id = i, inf[i].val = d[i]; sort(inf + 1, inf + 1 + fuck, [](const info &a, const info &b) { return a.val < b.val; }); for (int i = 1, j = 1; i <= q; i++)
{
while (j <= fuck && inf[j].val <= ask[i].a) { add(inf[j].id), j++; }
int n = ask[i].n, m = ask[i].m; if (n > m) swap(n, m);
int ans = 0;
for (int i = 1, j; i <= n; i = j + 1)
{
j = min(n / (n / i), m / (m / i));
ans += (getsum(j) - getsum(i - 1)) * (n / i) * (m / i);
}
ask[i].ans = ans;
} sort(ask + 1, ask + 1 + q, [](const query &a, const query &b) { return a.id < b.id; });
for (int i = 1; i <= q; i++) printf("%d\n", ask[i].ans & 2147483647);
return 0;
}

题目要求对2^31取模,别忘了自然溢出最后对2147483647取一下and

luogu3312 [SDOI2014]数表 (莫比乌斯反演+树状数组)的更多相关文章

  1. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  2. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  3. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  4. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

  5. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  6. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  7. bzoj 3529 数表 莫比乌斯反演+树状数组

    题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  9. BZOJ_3529_[Sdoi2014]数表_莫比乌斯反演+树状数组

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

随机推荐

  1. Cassandra 学习二

    Cassandra的架构 Cassandra的设计目的是处理跨多个节点的大数据工作负载,而没有任何单点故障.Cassandra在其节点之间具有对等分布式系统,并且数据分布在集群中的所有节点之间. 1 ...

  2. C++11 引用叠加规则和模板参数类型推导规则

    http://zm8.sm-img2.com/?src=http%3A%2F%2F***%2FArticle%2F38320&uid=57422b713ac761e653af7b327bfd9 ...

  3. java selenium webdriver第二讲 页面元素定位

    自动化测试实施过程中,测试程序中常用的页面操作有三个步骤 1.定位网页上的页面元素,并存储到一个变量中 2.对变量中存储的页面元素进行操作,单击,下拉或者输入文字等 3.设定页面元素的操作值,比如,选 ...

  4. Windows安装mysql 5.7.*.zip步骤

    1.去官网上下载.zip格式的文件. 2.解压到一个文件夹,这里我用D:\MySql表示 3.在D:\MySql\mysql-5.7.17-winx64下新建my.ini配置文件 黄色背景色的地方需要 ...

  5. AFNetworking-2.5-源码阅读剖析--网络请求篇

    一.前言 AFNetworking,非常友好简单的网络请求第三方框架,在GitHub中已经获得了25000++的star,链接地址:https://github.com/AFNetworking/AF ...

  6. DAY16-Django之model

    Object Relational Mapping(ORM) ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据 ...

  7. Call requires API level 7 (current min is 1):(问题解决)

    在一个导入的项目里修改加入webView的时候设置缩放属性的设置报错: Call requires API level 7 (current min is 1): android.webkit.Web ...

  8. Hibernate和JPA

    ORM(Object/Relational Mapping : 对象关系映射)就是利用描述对象和数据库之间映射的元数据,自动(且透明)的将java应用程序中的对象持久化到关系数据库的表中.HIbern ...

  9. iOS 聊天界面

    #import <UIKit/UIKit.h> @interface AppDelegate : UIResponder <UIApplicationDelegate> @pr ...

  10. C++中的纯虚函数和虚函数的作用

    1. 虚函数和纯虚函数可以定义在同一个类(class)中,含有纯虚函数的类被称为抽象类(abstract class),而只含有虚函数的类(class)不能被称为抽象类(abstract class) ...