BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】
题目链接
题解
dp难题总是想不出来,,
首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀
因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣
然后很显然可以设出\(f[i][j]\)表示前\(i\)个玉米,第\(i\)棵必须选,且共拔高了\(j\)次的最大值
由之前的性质,我们知道\(f[i][j]\)状态中\(i\)的高度是\(h[i] + j\)
所以可以的到状态转移方程:
\]
可以用二维树状数组维护
复杂度\(O(nK + nlog^2n)\)
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 10005,maxm = 505,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int h[maxn],n,K;
int s[maxn][maxm],N = 5503,M = 503;
void modify(int u,int p,int v){
for (int i = u; i <= N; i += lbt(i))
for (int j = p; j <= M; j += lbt(j))
s[i][j] = max(s[i][j],v);
}
int query(int u,int p){
int re = 0;
for (int i = u; i; i -= lbt(i))
for (int j = p; j; j -= lbt(j))
re = max(re,s[i][j]);
return re;
}
int main(){
n = read(); K = read();
for (int i = 1; i <= n; i++) h[i] = read();
int ans = 0;
for (int i = 1; i <= n; i++){
for (int j = K; j >= 0; j--){
int t = query(h[i] + j,j + 1) + 1;
ans = max(ans,t);
modify(h[i] + j,j + 1,t);
}
}
printf("%d\n",ans);
return 0;
}
BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】的更多相关文章
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
- bzoj3594 方伯伯的玉米田 树状数组优化dp
f[i][j]表示到第i位,使用了j次机会的最长不下降子序列长度 转移:f[i][j]=max(f[x][y])+1; x<i; y<=j; a[x]+y<=a[i]+j; 所以根据 ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)
可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...
- [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp
我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...
- bzoj3594: [Scoi2014]方伯伯的玉米田
dp新优化姿势... 首先,当我们拔高时,一定右端点是n最优.因为如果右端点是r,相当于降低了r之后玉米的高度.显然n更优. 那么可以dp.dp[i][j]表示前i个拔高j次的LIS.dp[i][j] ...
- 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
随机推荐
- 使用JavaScript动态的绑定、解绑 a 标签的onclick事件,防止重复点击
页面上的 a 标签如下: <a class="more" style="cursor: pointer;" id="commentMore&qu ...
- 高封装的property方法
class Person(): def __init__(self): self.__age = 0 def set_age(self, age): if age < 0 or age > ...
- 记一次微信小程序在安卓的白屏问题
在做小程序的时候,做到了一个限时商品售卖,用到了倒计时,因为这个原因导致了安卓手机上使用小程序时,将小程序放入后台运行一段时间后,再次进入小程序后出现了页面白屏或者点击事件失效的情况,这里记录下 1. ...
- Windows Server 2008 IIS 并发请求设置
更新服务器的时候,突然发现部分机器出现了错误,大致描述如下 HTTP Error 503.2 - Service Unavailable 正在超过 serverRuntime@appConcurren ...
- tcl之控制流-for
- laravel-多条件查询并指定key输出
$room = DB::table('room') ->where(function($query) use($contList){ foreach ($contList as $k=>$ ...
- 779. K-th Symbol in Grammar
class Solution { public: int kthGrammar(int N, int K) { return helper(N, K, false); } int helper(int ...
- 删除警告的方法 python
import warningswarnings.filterwarnings('ignore')
- POJ-3126 BFS,埃式筛选及黑科技
题目大意:给定两个四位素数a b,要求把a变换到b,变换的过程要保证 每次变换出来的数都是一个 四位素数,而且当前这步的变换所得的素数 与 前一步得到的素数 只能有一个位不同,而且每步得到的 ...
- Android 中运行时权限获取联系人信息 Demo
代码比较简单... AndroidManifest.xml <?xml version="1.0" encoding="utf-8"?> <m ...