Offer 收割编程练习赛 87B 方圆距离
与坐标轴平行的矩形和圆的位置关系。
分两种情况。
圆与矩形交集不为空
此时答案为零。问题归结为如何判断圆与矩形交集不为空。
先排除矩形顶点在圆内或圆心在矩形内。
此时,若矩形与圆交集不为空,则必有矩形的某条边穿过圆(「穿过圆」也可表述为「割圆」,「线段穿过圆」的确切定义为「线段与圆周有两个交点」)。注意:这样的边可能不止一条。
问题归结为如何判断线段是否割圆。
线段割圆的充要条件是圆心到线段所在直线的垂直投影落在线段上,且圆心到投影的距离小于半径。
矩形的左下顶点为 $(x_1, y_1)$,右上顶点为 $(x_2, y_2)$,圆心为 $(x, y)$,半径为 $r$ 。
不失一般性,考虑矩形的底边 $(x_1, y_1) , (x_2, y_1)$ 割圆的条件。
性质
在排除了矩形的某个顶点在圆内或圆心在矩形内的条件下,矩形的底边上有点在圆内当且仅当
$x_1 < x < x_2$ 且 $|y - y_1| \le r$ 。
其余边的情形是类似的。
圆与矩形交集为空的情形
此时应当注意到:
- 矩形上距离圆周最近的点必然在边界上。
- 矩形边界上任意一点 $P$ 到圆周的最短距离为 $|PC| - r$,$|PC|$ 表示 $P$ 到圆心 $C$ 的距离。
- 问题归结为求圆心 $C$ 到矩形边界的最短距离,亦即点到线段的最短距离。
备选的点(candidates)是圆心在四条边所在的直线上的垂直投影(即垂足)与边的端点。
如果「圆心在矩形的某条边所在的直线上的垂直投影」落在这条边上则此投影点是这条边上的备选点,否则这条边的两端点是这条边上的备选点。
(这一部分内容还在建设中)
举一反三
- 如果矩形不是坐标轴平行的,通过坐标变换就可以转化到坐标轴平行的情形。
如何进行坐标变换?
首先假设我们想要的坐标变换是一个线性变换。
任取矩形的一个顶点 $A$,作为此线性变换的不动点。设 $A$ 的坐标为 $(x_A, y_A)$ 。
任取 $A$ 的一个邻点 $B$,使得 $\vec{AB}$ 是变换过后的 $x$ 轴正方向,亦即 $B$ 变换过后的坐标为 $(x_A + |AB|, y_A)$,$|AB|$ 表示线段 $AB$ 的长度。
- 将矩形换成任意凸多边形怎么做?
问题归结为求点到线段的最短距离。
Offer 收割编程练习赛 87B 方圆距离的更多相关文章
- hihocoder [Offer收割]编程练习赛4
描述 最近天气炎热,小Ho天天宅在家里叫外卖.他常吃的一家餐馆一共有N道菜品,价格分别是A1, A2, ... AN元.并且如果消费总计满X元,还能享受优惠.小Ho是一个不薅羊毛不舒服斯基的人,他希望 ...
- hihocoder [Offer收割]编程练习赛61
[Offer收割]编程练习赛61 A:最小排列 给定一个长度为m的序列b[1..m],再给定一个n,求一个字典序最小的1~n的排列A,使得b是A的子序列. 贪心即可,b是A的子序列,把不在b中的元素, ...
- [Offer收割]编程练习赛46
[Offer收割]编程练习赛46赛后题解 A.AEIOU 分析
- hihocoder offer收割编程练习赛9 B 水陆距离
思路: 宽搜,多个起点. 实现: #include <iostream> #include <cstdio> #include <algorithm> #inclu ...
- 【[Offer收割]编程练习赛9 B】水陆距离
[题目链接]:http://hihocoder.com/problemset/problem/1478 [题意] [题解] 一开始把所有的水域的位置都加入到队列中去; 然后跑一个bfs. 第一次到达的 ...
- [Offer收割] 编程练习赛63
题目1 : 命名 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 有两个公司想要合并,第一个公司的名字是一个字符串S,第二个公司的名字是一个字符串T. 合并后的新公司是这样 ...
- [Offer收割]编程练习赛9,10
题目1 : 闰秒 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 计算机系统中使用的UTC时间基于原子钟,这种计时方式同“地球自转一周是24小时”的计时方式有微小的偏差. ...
- hihocoder [Offer收割]编程练习赛14
A.小Hi和小Ho的礼物 谜之第1题,明明是第1题AC率比C还要低.题目是求在n个不同重量袋子选4袋,2袋给A,2袋给B,使2人获得重量相同,求问方案数. 我也是一脸懵b...o(n2)暴力枚举发现把 ...
- ACM学习历程—Hihocoder [Offer收割]编程练习赛1
比赛链接:http://hihocoder.com/contest/hihointerview3/problem/1 大概有一个月没怎么打算法了.这一场的前一场BC,也打的不是很好.本来Div1的A和 ...
随机推荐
- forEach、for...in、for...of
forEach 数组实例的遍历方法 const arr=['red', 'green', 'blue']; arr.forEach(function(element, index) { console ...
- pdo->prepare 返回false的问题总结
报错信息: Fatal error: Call to a member function execute() on a non-object 一般是pdo->prepare 返回了false导致 ...
- Laravel系列 Web
一.Homestead准备 上一篇文章已经对它的配置进行了说明,下面对Homestead.yaml进行说明 --- ip: "192.168.10.10" memory: 2048 ...
- laravel通过make auth实现手机号登录
首先按照Laravel的教程,安装认证系统. php artisan make:auth php artisan migrate laravel已经安装完成认证系统,默认注册和登录都是用邮箱. 如果想 ...
- http虚拟主机的简单配置训练
http的虚拟主机 对于某些web访问站点而言,每天的访问量很少,因此真正的放一台服务器去进行web站点是很 浪费资源的,因此我们选择了虚拟主机 web处理模块的分类(MPM) 1.perfork 一 ...
- 为 dll (类库) 解决方案添加测试项目
解决方案中新建项目, 添加引用, "解决方案" -> "项目", 选中即可, 而非直接添加 dll, 这会导致编译出错
- cocos2d-x 3.0环境配置(转)
cocos2d-x 3.0发布有一段时间了,作为一个初学者,我一直觉得cocos2d-x很坑.每个比较大的版本变动,都会有不一样的项目创建方式,每次的跨度都挺大…… 但是凭心而论,3.0RC版本开始 ...
- 7 Django分页器文章分页
1.复习 2.这节课要解决的问题? 3.分页的原理 4.准备工作 (1)创建Django项目 C:\Users\Administrator\Desktop\root3>django-admin ...
- Maven学习 (六) 搭建多模块企业级项目
首先,前面几次学习已经学会了安装maven,如何创建maven项目等,最近的学习,终于有点进展了,搭建一下企业级多模块项目. 好了,废话不多说,具体如下: 首先新建一个maven项目,pom.xml的 ...
- vim 简单命令
(1)查找结果全部单独显示 命令: :lvimgrep /pattern/ % | lopen (2)设置文本高亮 命令: :colorscheme evening 把 ":colorsch ...