Time Limit: 20 Sec  Memory Limit: 162 MB
Submit: 5725  Solved: 3437
[Submit][Status][Discuss]

Description

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

Input

  第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。

Output

  仅包含一个整数,表示你所设计的最优方案的总费用。

Sample Input

3 3
2 3 4
1 2 2
2 3 5
3 3 2

Sample Output

14

HINT

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1。

Source

如果不知道这题是线性规划的话肯定很难看出来,不过知道了就好做多了

若$C_i$为第$i$个人的花费,$a_i$为第$i$天需要的人,$x_i$为第$i$个人的数量

那么我们需要满足对于每一天$i$,$\sum_{i = 1}^{M} x_i >= a_i$,同时$\sum C_i x_i$最小

啥?最小?当时我推出式子来就蒙了qwq。然后跑去膜题解

根据对偶原理,问题相当于使得$\sum_{i = 1}^{M} x_i <= C_i$,的情况下$\sum a_i x_i$最大

仔细一想好像挺有道理

关于最后答案是否为整数的问题

https://www.luogu.org/problemnew/solution/P3980

#include<cstdio>
#include<algorithm>
#include<cmath>
#define LL long long
using namespace std;
const int MAXN = , INF = 1e9 + ;
const double eps = 1e-;
inline int read() {
char c = getchar();int x = ,f = ;
while(c < '' || c > ''){if(c == '-')f = -;c = getchar();}
while(c >= '' && c <= ''){x = x * + c - '',c = getchar();}
return x * f;
}
int N, M;
LL a[][];
void Pivot(int l, int e) {
double t = a[l][e]; a[l][e] = ;
for(int i = ; i <= N; i++) a[l][i] /= t;
for(int i = ; i <= M; i++) {
if(i != l && abs(a[i][e]) > eps) {
t = a[i][e]; a[i][e] = ;
for(int j = ; j <= N; j++)
a[i][j] -= a[l][j] * t;
}
}
}
bool simplex() {
while() {
int l = , e = ; double mn = INF;
for(int i = ; i <= N; i++)
if(a[][i] > eps)
{e = i; break;}
if(!e) break;
for(int i = ; i <= M; i++)
if(a[i][e] > eps && a[i][] / a[i][e] < mn)
mn = a[i][] / a[i][e], l = i;
Pivot(l, e);
}
return ;
}
int main() {
srand();
N = read(); M = read();
for(int i = ; i <= N; i++) a[][i] = read();
for(int i = ; i <= M; i++) {
int S = read(), T = read(), C = read();
for(int j = S; j <= T; j++)
a[i][j] = ;
a[i][] = C;
}
simplex();
printf("%lld", -a[][]);
return ;
}

BZOJ1061: [Noi2008]志愿者招募(线性规划)的更多相关文章

  1. BZOJ1061 NOI2008 志愿者招募 线性规划、费用流

    传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...

  2. [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...

  3. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

  4. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  5. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  6. BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)

    题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...

  7. 【bzoj1061】[NOI2008]志愿者招募 线性规划与费用流

    题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...

  8. 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...

  9. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

随机推荐

  1. codeblocks 控制台输出乱码

    解决办法如图 如果你和我用的一样是kde环境  把Terminal to launch console programs那个选项改成 上图  konsole -e 如果你用的是gnome环境     ...

  2. CSS伪类:first-child与:first-of-type的异同

    CSS里关于元素匹配里面有两个非常类似却又不尽相同的选择器,伪类 :first-child 和 :first-of-type 两者在匹配方式上有很大差异,其实在一开始自己也没去注意这个细节,直到上次一 ...

  3. DB2错误码大全

    sqlcode sqlstate 说明 000 00000 SQL语句成功完成 01xxx SQL语句成功完成,但是有警告 +012 01545 未限定的列名被解释为一个有相互关系的引用 +098 0 ...

  4. 移动Web开发与适配笔记

    项目要是适配手机端,想透彻的把相关内容弄清楚,现在总结一下. 一.移动端开发有如下特点: 1.跑在手机端的web 页面就是h5页面 2.具有跨平台性(web 安卓 iOS都适应) 3.基于webvie ...

  5. [转]一次使用Eclipse Memory Analyzer分析Tomcat内存溢出

    一次使用Eclipse Memory Analyzer分析Tomcat内存溢出 前言 在平时开发.测试过程中.甚至是生产环境中,有时会遇到OutOfMemoryError,Java堆溢出了,这表明程序 ...

  6. Spring Bean相互依赖问题

    如果是通过get,set 注入就不会有问题 如果是通过构造函数注入,SPRING就会报循环引用注入出错 循环依赖——在采用构造器注入的方式配置bean时,很有可能会产生循环依赖的情况.比如说,一个类A ...

  7. springboot整合mybatis+oracle

    第一步 认识springboot :springboot是为了解决配置文件多,各个组件不统一的问题,它省去了很多配置文件,同时实现了spring产品的整合. 创建springboot项目:通过选择sp ...

  8. Mysql慢查询 [第一篇]

    一.简介 开启慢查询日志,可以让MySQL记录下查询超过指定时间的语句,通过定位分析性能的瓶颈,才能更好的优化数据库系统的性能. 二.参数说明 slow_query_log 慢查询开启状态slow_q ...

  9. 五分钟急速搭建wordpress(博主亲测有效)

    第一步:下载WordPress安装包并解压 从此处下载WordPress压缩包并解压缩 http://wordpress.org/download/ 如果你想将WordPress上传至一个远程服务器, ...

  10. Github站点搭建 gh-pages

    首先:把完整代码放在 gh-pages 分支上,设置 gh-pages 为默认分支(习惯性设置,也可以不设置). 网址: http://你的github域名.github.io/项目入口文件夹/ 本宝 ...