Rope in the Labyrinth

Time Limit:500MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

Description

A labyrinth with rectangular form and size m × n is divided into square cells with sides' length 1 by lines that are parallel with the labyrinth's sides. Each cell of the grid is either occupied or free. It is possible to move from one free cell to another free cells that share a common side with the cell. One cannot move beyond the labyrinth's borders. The labyrinth is designed pretty specially: for any two cells there is only one way to move from one cell to the other. There is a hook at each cell's center. In the labyrinth there are two special free cells, such that if you can connect the hooks of those two cells with a rope, the labyrinth's secret door will be automatically opened. The problem is to prepare a shortest rope that can guarantee, you always can connect the hooks of those two cells with the prepared rope regardless their position in the labyrinth.

Input

The first line contains integers n and m (3 ≤ nm ≤ 820). The next lines describe the labyrinth. Each of the next m lines contains ncharacters. Each character is either "#" or ".", with "#" indicating an occupied cell, and "." indicating a free cell.

Output

Print out in the single line the length (measured in the number of cells) of the required rope.

Sample Input

input output
7 6
#######
#.#.###
#.#.###
#.#.#.#
#.....#
#######
8

题目大意:给你一个图,"."表示你可以走,"#“表示墙不能走,每个格子都有一个钩。任意两个格子之间只有一条路,现在问你最短能让所有"."的格子中的钩能用绳子连接的绳子长度。

解题思路:其实就是让你求树的直径的。由"."构成的是一棵树,然后求树的直径,两次广搜即可。

#include<stdio.h>
#include<algorithm>
#include<queue>
#include<string.h>
using namespace std;
typedef long long LL;
const int maxn = 900;
char Map[maxn][maxn];
bool vis[maxn][maxn];
int f[4][2] = {{1,0},{0,1},{-1,0},{0,-1}};
struct Node{
int x,y,step;
};
queue<Node>Q;
bool jud(int i,int j){
Node st;
int ret = 0;
if(Map[i-1][j] == '#'){
ret++;
}
if(Map[i][j-1] == '#'){
ret++;
}
if(Map[i+1][j] == '#'){
ret++;
}
if(Map[i][j+1] == '#'){
ret++;
}
if(ret >= 3){
st.x = i, st.y = j, st.step = 0;
Q.push(st);
return true;
}
return false;
}
int n,m;
Node BFS(){
Node st,tmp,en;
en = Q.front();
vis[en.x][en.y] = 1;
while(!Q.empty()){
st = Q.front();
Q.pop();
if(st.step > en.step){
en = st;
}
int tmpx ,tmpy;
for(int i = 0; i < 4; i++){
tmp.x = st.x + f[i][0];
tmp.y = st.y + f[i][1];
if(tmp.x <= 0 ||tmp.x > m ||tmp.y <= 0 || tmp.y > n || Map[tmp.x][tmp.y] =='#' ||vis[tmp.x][tmp.y]){
continue;
}
vis[tmp.x][tmp.y] = 1;
tmp.step = st.step + 1;
Q.push(tmp);
}
}
return en;
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
while(!Q.empty()) Q.pop();
for(int i = 1; i <= m; i++){
getchar();
for(int j = 1; j <= n; j++){
scanf("%c",&Map[i][j]);
}
}
int flag = 0;
for(int i = 1; i <= m; i++){
if(flag) break;
for(int j = 1; j <= n; j++){
if(Map[i][j] == '.' && flag == 0){
flag = jud(i,j);
}
if(flag) break;
}
}
Node st = BFS();
memset(vis,0,sizeof(vis));
// printf("%d %d %d+++\n",st.x,st.y,st.step);
st.step = 0;
Q.push(st);
Node en = BFS();
printf("%d\n",en.step);
}
return 0;
}

  

URAL 1145—— Rope in the Labyrinth——————【求树的直径】的更多相关文章

  1. ural 1145. Rope in the Labyrinth

    1145. Rope in the Labyrinth Time limit: 0.5 secondMemory limit: 64 MB A labyrinth with rectangular f ...

  2. poj2631 求树的直径裸题

    题目链接:http://poj.org/problem?id=2631 题意:给出一棵树的两边结点以及权重,就这条路上的最长路. 思路:求实求树的直径. 这里给出树的直径的证明: 主要是利用了反证法: ...

  3. poj1985 Cow Marathon (求树的直径)

    Cow Marathon Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 3195   Accepted: 1596 Case ...

  4. hdu 4607 Park Visit 求树的直径

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 题目大意:给你n个点,n-1条边,将图连成一棵生成树,问你从任意点为起点,走k(k<=n) ...

  5. [USACO2004][poj1985]Cow Marathon(2次bfs求树的直径)

    http://poj.org/problem?id=1985 题意:就是给你一颗树,求树的直径(即问哪两点之间的距离最长) 分析: 1.树形dp:只要考虑根节点和子节点的关系就可以了 2.两次bfs: ...

  6. 4612 warm up tarjan+bfs求树的直径(重边的强连通通分量)忘了写了,今天总结想起来了。

    问加一条边,最少可以剩下几个桥. 先双连通分量缩点,形成一颗树,然后求树的直径,就是减少的桥. 本题要处理重边的情况. 如果本来就两条重边,不能算是桥. 还会爆栈,只能C++交,手动加栈了 别人都是用 ...

  7. HDU4612+Tarjan缩点+BFS求树的直径

    tarjan+缩点+树的直径题意:给出n个点和m条边的图,存在重边,问加一条边以后,剩下的桥的数量最少为多少.先tarjan缩点,再在这棵树上求直径.加的边即是连接这条直径的两端. /* tarjan ...

  8. hdoj 4612 Warm up【双连通分量求桥&&缩点建新图求树的直径】

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Su ...

  9. 求树的直径+并查集(bfs,dfs都可以)hdu4514

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4514 这题主要是叫我们求出树的直径,在求树的直径之前要先判断一下有没有环 树的直径指的就是一棵树上面距 ...

随机推荐

  1. MySQL的索引单表优化案例分析

    建表 建立本次优化案例中所需的数据库及数据表 CREATE DATABASE db0206; USE db0206; CREATE TABLE `db0206`.`article`( `id` INT ...

  2. github blog

    git version 2.18.0.windows.1 node-v10.8.0-win-x64.zip 1 安装node.js,直接下载,配置环境变量即可(win10重启生效) 2 git安装,略 ...

  3. ASPxGridView 下拉框不让输入

     DropDownStyle="DropDownList"该属性使combox控件不能手动输入数据,只能在下拉列表中选择

  4. 51nod1478(yy)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1478&judgeId=365133 题意: 中文题诶 ...

  5. [转]关于TDD、BDD和DDD的一些看法

    在实际的项目中,我们可能随时面对各种不同的需求,它的各个方面的要素决定了我们所采用的开发模式. 比如,它的复杂度如何?所有的需求是否足够清晰?开发人员对相关的业务是否足够了解?项目的工期是否合理?种种 ...

  6. Eclipse中使用Spring IOC容器的具体方法

    1.通过IOC容器创建对象,并为属性赋值 在IOC容器本身对象创建时(xml文件加载时),会将配置文件中配置好的bean先创建出来,按照xml文件中配置的先后顺序创建 <bean id=&quo ...

  7. Drop user 报ORA-00600 [KTSSDRP1]

    一客户删除一个数据库用户THH时报错: 说明在获取seg$时没有找到相应的条目,先来解释下这个600错误的参数含义: Arg [a] Tablespace number Arg [b] File nu ...

  8. react PropTypes 与 DefaultProps

    PropTypes 与 DefaultProps import React ,{ Component } from 'react'; import PropTypes from 'prop-types ...

  9. SQL Server 清理日志

    USE[master] GO ALTER DATABASE 要清理的数据库名称 SET RECOVERY SIMPLE WITH NO_WAIT GO ALTER DATABASE 要清理的数据库名称 ...

  10. java中检测网络是否相通

    转载:https://www.cnblogs.com/moon-jiajun/p/3454576.html 1 package com.cjj.client; 2 3 import java.io.I ...