C++离散傅里叶变换

一、序言:

该教程基于之前的图像处理类MYCV,是对其的补充。

二、设计目标

对图像进行简单的离散傅里叶变换,并输出生成的频谱图。

三、需要提前掌握的知识

二维傅里叶变换公式:

四、详细步骤

1.首先定义一个方法,该方法对输入的图像进行傅里叶变换

输入:MyImage 源图像

输出:ComplexNu 进行离散傅里叶变换后的复数数组

定义:

static ComplexNumber* Dft2(MyImage const &Scr);

实现:

ComplexNumber* MyCV::Dft2(MyImage const &Scr)

{

    int width = Scr.m_width;

    int height = Scr.m_height;

    // 将 scr_data 转化为灰度

    MyImage *grayimage = Gray(Scr);

    unsigned char* gray_data = grayimage->m_data;

    int gray_bytesPerLine = grayimage->m_bytesPerLine;

    // 将 gray_data 转化为 double 型,并去掉用于填充的多余空间

    double *double_data = new double[width*height];

    for(int i=;i<height;i++)

        for(int j=;j<width;j++)

        {

            double_data[i*width+j]=(double)gray_data[i*gray_bytesPerLine+j];

        }

    // 对 double_data 进行傅里叶变换

    ComplexNumber *dft2_data = new ComplexNumber[width*height];

    double fixed_factor_for_axisX = (- * PI) / height;

    // evaluate -i2π/N of -i2πux/N, and store the value for computing efficiency

    double fixed_factor_for_axisY = (- * PI) / width;

    // evaluate -i2π/N of -i2πux/N, and store the value for computing efficiency

    for (int u = ; u<height; u++) {

            for (int v = ; v<width; v++) {

                for (int x = ; x<height; x++) {

                    for (int y = ; y<width; y++) {

                        double powerX = u * x * fixed_factor_for_axisX; // evaluate -i2πux/N

                        double powerY = v * y * fixed_factor_for_axisY; // evaluate -i2πux/N

                        ComplexNumber cplTemp;

                        cplTemp.m_rl = double_data[y + x*width] * cos(powerX + powerY);

                        // evaluate f(x) * e^(-i2πux/N), which is equal to f(x) * (cos(-i2πux/N)+sin(-i2πux/N)i) according to Euler's formula

                        cplTemp.m_im = double_data[y + x*width] * sin(powerX + powerY);

                        dft2_data[v + u*width] = dft2_data[v + u*width] + cplTemp;

                    }

                }

            }

        }

    // 返回傅里叶数组

    return dft2_data;

}

2.为了让傅里叶变换可视化,旭阳对其进行标准化和中性化

输入:ComplexNumber 离散傅里叶变换生成的复数数组

输出:MyImage 可视化后的图像

定义:

static MyImage* Dft22MyImage(ComplexNumber *Scr,int width,int height);

实现:

MyImage* MyCV::Dft22MyImage(ComplexNumber *Scr, int const width, int const height)

{

    // 将傅里叶数组归一化

    // 取模

    double mold[width*height];

    for(int i =  ;i<width*height;i++)

    {

        mold[i] = Scr[i].get_mold();

    }

    // 获取最小值

    double min = mold[];

    for(int i = ;i<width*height;i++)

    {

        if(mold[i]<min)

            min = mold[i];

    }

    // 获取去掉前几大值的最大值

    double maxqueue[] = {.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.},max;

    for(int i = ;i<width*height;i++){

        if(mold[i]>maxqueue[])

            maxqueue[] = mold[i];

    }

    for(int j =;j<;j++){

        for(int i = ;i<width*height;i++){

            if(mold[i]>maxqueue[j]&&mold[i]<maxqueue[j-])

                maxqueue[j] = mold[i];

        }

    }

    max = maxqueue[];

    unsigned char *normalized_data = new unsigned char[width*height];

    for(int i=;i<height;i++)

        for(int j=;j<width;j++)

        {

            unsigned char t = (unsigned char)((mold[i*width+j]-min)/(max-min)*);

            if(t>)

                t = ;

            normalized_data[i*width+j]=t;

        }

    // 将图像中心化

    unsigned char* center_data = new unsigned char[width*height];

    for (int u = ; u<height; u++)

        {

        for (int v = ; v<width; v++) {

            if ((u<(height / )) && (v<(width / ))) {

                center_data[v + u*width] =

                    normalized_data[width /  + v + (height /  + u)*width];

            }

            else if ((u<(height / )) && (v >= (width / ))) {

                center_data[v + u*width] =

                    normalized_data[(v - width / ) + (height /  + u)*width];

            }

            else if ((u >= (height / )) && (v<(width / ))) {

                center_data[v + u*width] =

                    normalized_data[(width /  + v) + (u - height / )*width];

            }

            else if ((u >= (height / )) && (v >= (width / ))) {

                center_data[v + u*width] =

                    normalized_data[(v - width / ) + (u - height / )*width];

            }

        }

    }

    // 向中心化的数组填充空间

    int bytesPerLine = (width*+)/*;

    unsigned char *dst_data = new unsigned char[bytesPerLine*height];

    for(int i=;i<height;i++)

        for(int j=;j<width;j++)

        {

            dst_data[i*bytesPerLine+j] = center_data[i*width+j];

        }

    return new MyImage(dst_data,width,height,MyImage::format::GRAY8);

}

至此,离散傅里叶变换的方法实现完成,效果图如下:

如果上述教程或代码中有任何错误,欢迎批评和指证。

五、c++实现离散傅里叶变换的更多相关文章

  1. 离散傅里叶变换(DFT)

    目录     一.研究的意义     二.DFT的定义    三.DFT与傅里叶变换和Z变换的关系     四.DFT的周期性     五.matlab实验       五.1 程序         ...

  2. opencv3.2.0图像离散傅里叶变换

    源码: ##名称:离散傅里叶变换 ##平台:QT5.7.1+opencv3.2.0 ##日期:2017年12月13. /**** 新建QT控制台程序****/ #include <QCoreAp ...

  3. c语言数字图像处理(六):二维离散傅里叶变换

    基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...

  4. Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)

    我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...

  5. opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)

    离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" ...

  6. 用matlab脚本语言写M文件函数时用三种方法简单实现实现DFT(离散傅里叶变换)

    %用二重循环实现DFT: function xk=dt_0(xn); %define a function N=length(xn); %caculate the length of the vari ...

  7. 灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)

    学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  8. 【转】离散傅里叶变换-DFT(FFT)基础

    转:https://blog.csdn.net/zhangxz259/article/details/81627341 什么是离散傅里叶变换 matlab例子 本文是从最基础的知识开始讲解,力求用最通 ...

  9. OpenCV离散傅里叶变换

    离散傅里叶变换 作用:得到图像中几何结构信息 结论:傅里叶变换后的白色部分(即幅度较大的低频部分),表示的是图像中慢变化的特性,或者说是灰度变化缓慢的特性(低频部分). 傅里叶变换后的黑色部分(即幅度 ...

随机推荐

  1. 使用VS Code配合Remote Development插件连接远程服务器(Mac/Linux+Windows) | Using VS Code with Remote Development Connect to Remote Server (Mac/Linux+Windows)

    最新版VS Code(2019年6月)出了一系列新的插件,包括Remote Development,Remote SSH等,使得用户可以使用VS Code远程连接服务器写代码,方便了协同工作.具体配置 ...

  2. C#String.Split (string[], StringSplitOptions)中的StringSplitOptions是什么意思,看了msdn还是不懂?

    MSDN上面这样子写的: [ComVisibleAttribute(false)] public string[] Split(string[] separator,StringSplitOption ...

  3. oracle开发so easy(一)

    如何让你的程序可以在oracle数据库和sqlserver数据库自由切换? 如何让你从跨数据库开发的不适中解脱出来? 跟我来吧,我们一起开始entity framework的开发之旅.是的,entit ...

  4. 常用转义字符例如&amp;的含义

    &amp中的amp就是英文ampersand的缩写,该词的意思是&这个符号& 是 HTML 中 & 的表示方法.即在html中用&表示&符号

  5. C#对图片进行切割

    C#实例代码: /// <summary> /// 切割图片 /// </summary> /// <param name="sourceBitmap" ...

  6. kolla base目录下Dockerfile.j2分析

    这几天在研究kolla制作镜像的流程,记录下对kolla项目中base目录Dockerfile.j2阅读过程.本质上base目录下的Dockerfile.j2文件,对是yum 源的一些配置,从而使制作 ...

  7. 字符串游戏(strgame)——博弈

    题目 [题目描述] pure 和 dirty 决定玩 $T$ 局游戏.对于每一局游戏,有 $n$ 个字符串,并且每一局游戏由 $K$ 轮组成.具体规则如下:在每一轮游戏中,最开始有一个空串,两者轮流向 ...

  8. 我的省选 Day -14

    Day -14 07:43:27 到机房了,不知道早上要做什么题,要不去选一题NOI原题来试试水好了 (因为NOI的原题质量比较有保证吧..) 09:11:22 正在做NOI2016的网格 开始写自己 ...

  9. Eclipse设置代码模板Code Template

    团队协作最好是使用相同的代码模板 Code Template,打开 Window -> Preference -> Java -> Code Style -> Code Tem ...

  10. Codeforces 350D(计算几何)

    要点 用A.B.C一般式确定每条直线 将合法的圆心中点存到每条直线所属的vector中 枚举所有线段,二分后\(O(1)\)得到其中存在多少答案,累加 #include <cstdio> ...