C++离散傅里叶变换

一、序言:

该教程基于之前的图像处理类MYCV,是对其的补充。

二、设计目标

对图像进行简单的离散傅里叶变换,并输出生成的频谱图。

三、需要提前掌握的知识

二维傅里叶变换公式:

四、详细步骤

1.首先定义一个方法,该方法对输入的图像进行傅里叶变换

输入:MyImage 源图像

输出:ComplexNu 进行离散傅里叶变换后的复数数组

定义:

static ComplexNumber* Dft2(MyImage const &Scr);

实现:

ComplexNumber* MyCV::Dft2(MyImage const &Scr)

{

    int width = Scr.m_width;

    int height = Scr.m_height;

    // 将 scr_data 转化为灰度

    MyImage *grayimage = Gray(Scr);

    unsigned char* gray_data = grayimage->m_data;

    int gray_bytesPerLine = grayimage->m_bytesPerLine;

    // 将 gray_data 转化为 double 型,并去掉用于填充的多余空间

    double *double_data = new double[width*height];

    for(int i=;i<height;i++)

        for(int j=;j<width;j++)

        {

            double_data[i*width+j]=(double)gray_data[i*gray_bytesPerLine+j];

        }

    // 对 double_data 进行傅里叶变换

    ComplexNumber *dft2_data = new ComplexNumber[width*height];

    double fixed_factor_for_axisX = (- * PI) / height;

    // evaluate -i2π/N of -i2πux/N, and store the value for computing efficiency

    double fixed_factor_for_axisY = (- * PI) / width;

    // evaluate -i2π/N of -i2πux/N, and store the value for computing efficiency

    for (int u = ; u<height; u++) {

            for (int v = ; v<width; v++) {

                for (int x = ; x<height; x++) {

                    for (int y = ; y<width; y++) {

                        double powerX = u * x * fixed_factor_for_axisX; // evaluate -i2πux/N

                        double powerY = v * y * fixed_factor_for_axisY; // evaluate -i2πux/N

                        ComplexNumber cplTemp;

                        cplTemp.m_rl = double_data[y + x*width] * cos(powerX + powerY);

                        // evaluate f(x) * e^(-i2πux/N), which is equal to f(x) * (cos(-i2πux/N)+sin(-i2πux/N)i) according to Euler's formula

                        cplTemp.m_im = double_data[y + x*width] * sin(powerX + powerY);

                        dft2_data[v + u*width] = dft2_data[v + u*width] + cplTemp;

                    }

                }

            }

        }

    // 返回傅里叶数组

    return dft2_data;

}

2.为了让傅里叶变换可视化,旭阳对其进行标准化和中性化

输入:ComplexNumber 离散傅里叶变换生成的复数数组

输出:MyImage 可视化后的图像

定义:

static MyImage* Dft22MyImage(ComplexNumber *Scr,int width,int height);

实现:

MyImage* MyCV::Dft22MyImage(ComplexNumber *Scr, int const width, int const height)

{

    // 将傅里叶数组归一化

    // 取模

    double mold[width*height];

    for(int i =  ;i<width*height;i++)

    {

        mold[i] = Scr[i].get_mold();

    }

    // 获取最小值

    double min = mold[];

    for(int i = ;i<width*height;i++)

    {

        if(mold[i]<min)

            min = mold[i];

    }

    // 获取去掉前几大值的最大值

    double maxqueue[] = {.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.,.},max;

    for(int i = ;i<width*height;i++){

        if(mold[i]>maxqueue[])

            maxqueue[] = mold[i];

    }

    for(int j =;j<;j++){

        for(int i = ;i<width*height;i++){

            if(mold[i]>maxqueue[j]&&mold[i]<maxqueue[j-])

                maxqueue[j] = mold[i];

        }

    }

    max = maxqueue[];

    unsigned char *normalized_data = new unsigned char[width*height];

    for(int i=;i<height;i++)

        for(int j=;j<width;j++)

        {

            unsigned char t = (unsigned char)((mold[i*width+j]-min)/(max-min)*);

            if(t>)

                t = ;

            normalized_data[i*width+j]=t;

        }

    // 将图像中心化

    unsigned char* center_data = new unsigned char[width*height];

    for (int u = ; u<height; u++)

        {

        for (int v = ; v<width; v++) {

            if ((u<(height / )) && (v<(width / ))) {

                center_data[v + u*width] =

                    normalized_data[width /  + v + (height /  + u)*width];

            }

            else if ((u<(height / )) && (v >= (width / ))) {

                center_data[v + u*width] =

                    normalized_data[(v - width / ) + (height /  + u)*width];

            }

            else if ((u >= (height / )) && (v<(width / ))) {

                center_data[v + u*width] =

                    normalized_data[(width /  + v) + (u - height / )*width];

            }

            else if ((u >= (height / )) && (v >= (width / ))) {

                center_data[v + u*width] =

                    normalized_data[(v - width / ) + (u - height / )*width];

            }

        }

    }

    // 向中心化的数组填充空间

    int bytesPerLine = (width*+)/*;

    unsigned char *dst_data = new unsigned char[bytesPerLine*height];

    for(int i=;i<height;i++)

        for(int j=;j<width;j++)

        {

            dst_data[i*bytesPerLine+j] = center_data[i*width+j];

        }

    return new MyImage(dst_data,width,height,MyImage::format::GRAY8);

}

至此,离散傅里叶变换的方法实现完成,效果图如下:

如果上述教程或代码中有任何错误,欢迎批评和指证。

五、c++实现离散傅里叶变换的更多相关文章

  1. 离散傅里叶变换(DFT)

    目录     一.研究的意义     二.DFT的定义    三.DFT与傅里叶变换和Z变换的关系     四.DFT的周期性     五.matlab实验       五.1 程序         ...

  2. opencv3.2.0图像离散傅里叶变换

    源码: ##名称:离散傅里叶变换 ##平台:QT5.7.1+opencv3.2.0 ##日期:2017年12月13. /**** 新建QT控制台程序****/ #include <QCoreAp ...

  3. c语言数字图像处理(六):二维离散傅里叶变换

    基础知识 复数表示 C = R + jI 极坐标:C = |C|(cosθ + jsinθ) 欧拉公式:C = |C|ejθ 有关更多的时域与复频域的知识可以学习复变函数与积分变换,本篇文章只给出DF ...

  4. Opencv 实现图像的离散傅里叶变换(DFT)、卷积运算(相关滤波)

    我是做Tracking 的,对于速度要求非常高.发现傅里叶变换能够使用. 于是学习之. 核心: 最根本的一点就是将时域内的信号转移到频域里面.这样时域里的卷积能够转换为频域内的乘积! 在分析图像信号的 ...

  5. opencv 3 core组件进阶(3 离散傅里叶变换;输入输出XML和YAML文件)

    离散傅里叶变换 #include "opencv2/core/core.hpp" #include "opencv2/imgproc/imgproc.hpp" ...

  6. 用matlab脚本语言写M文件函数时用三种方法简单实现实现DFT(离散傅里叶变换)

    %用二重循环实现DFT: function xk=dt_0(xn); %define a function N=length(xn); %caculate the length of the vari ...

  7. 灰度图像--频域滤波 傅里叶变换之离散傅里叶变换(DFT)

    学习DIP第23天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不 ...

  8. 【转】离散傅里叶变换-DFT(FFT)基础

    转:https://blog.csdn.net/zhangxz259/article/details/81627341 什么是离散傅里叶变换 matlab例子 本文是从最基础的知识开始讲解,力求用最通 ...

  9. OpenCV离散傅里叶变换

    离散傅里叶变换 作用:得到图像中几何结构信息 结论:傅里叶变换后的白色部分(即幅度较大的低频部分),表示的是图像中慢变化的特性,或者说是灰度变化缓慢的特性(低频部分). 傅里叶变换后的黑色部分(即幅度 ...

随机推荐

  1. jquery 选择器的总结

    元素选择 $("input") id选择 $('#id') class选择 $('.id') 属性选择 $('[prop]')或者$('[prop=“value1”]')或者$(' ...

  2. 解决spring mybatis 整合后mapper接口注入失败

    spring整合mybatis,在dao层我们只写一个接口,配置相应的*mapper.xml文件, 报如下错误: org.springframework.beans.factory.Unsatisfi ...

  3. Python 中的赋值、拷贝、引用

    在 python 中赋值语句总是建立对象的引用值,而不是复制对象.因此,python 变量更像是指针,而不是数据存储区域. 如图所示,当改变一个变量的值,另一个的值也会跟着改变.也就是浅拷贝. 若要实 ...

  4. C#监听窗体新建/鼠标移入移出

    在新建window窗体时会激活方法,并循环所有窗体,鼠标移动在重写方法的页面中也会激活 winform直接在继承了From窗体cs中 protected override void WndProc(r ...

  5. IIS 找不到.net framework 4.0/4.5程序池

    通常情况下是因为没注册造成的,也有可能跟操作系统有关系 以管理员身份运行cmd   打开我的电脑 C:\Windows\System32\cmd.exe,右键以管理员身份运行 然后:C:\WINDOW ...

  6. asp.net core系列 64 结合eShopOnWeb全面认识领域模型架构

    一.项目分析 在上篇中介绍了什么是"干净架构",DDD符合了这种干净架构的特点,重点描述了DDD架构遵循的依赖倒置原则,使软件达到了低藕合.eShopOnWeb项目是学习DDD领域 ...

  7. 图解linux安装hadoop

    安装步骤: 一.准备工作 1.解压文件 [root@localhost soft]# tar -zxvf hadoop-2.4.1.tar.gz 2.改名: [root@localhost soft] ...

  8. 大部分人的努力程度之低,根本轮不到拼天赋-----作者meiya

            格式的正确与否,直接影响了人得阅读感受. 看到书写格式正确,分段清楚,没有错别字,叙事有条理的邮件只有寥寥几封,大多都是一段到底,标点混乱,表达不清,主题不明,短短三行就有两个错别字. ...

  9. Java基础--常用API--集合类相关API

    一.泛型 1.泛型的本质是将类型参数化,即将数据类型作为参数. 2.泛型可以在编译期进行检查,其所有的强制转换是隐式且自动的,提高了代码的安全性. 3.泛型可以用在类(泛型类).接口(泛型接口).方法 ...

  10. java.lang.ClassCastException: java.util.ArrayList cannot be cast to com.github.pagehelper.Page

    出现这个错误,首先看配置mybatis-config.xml中的<plugins> <plugin interceptor="com.github.pagehelper.P ...