Codeforces Problem - 38E - Let's Go Rolling!(DP)
2 seconds
256 megabytes
standard input
standard output
On a number axis directed from the left rightwards, n marbles with coordinates x1, x2, ..., xn are situated. Let's assume that the sizes of the marbles are infinitely small, that is in this task each of them is assumed to be a material point. You can stick pins in some of them and the cost of sticking in the marble number i is equal to ci, number ci may be negative. After you choose and stick the pins you need, the marbles will start to roll left according to the rule: if a marble has a pin stuck in it, then the marble doesn't move, otherwise the marble rolls all the way up to the next marble which has a pin stuck in it and stops moving there. If there is no pinned marble on the left to the given unpinned one, it is concluded that the marble rolls to the left to infinity and you will pay an infinitely large fine for it. If no marble rolled infinitely to the left, then the fine will consist of two summands:
- the sum of the costs of stuck pins;
- the sum of the lengths of the paths of each of the marbles, that is the sum of absolute values of differences between their initial and final positions.
Your task is to choose and pin some marbles in the way that will make the fine for you to pay as little as possible.
The first input line contains an integer n (1 ≤ n ≤ 3000) which is the number of marbles. The next n lines contain the descriptions of the marbles in pairs of integers xi, ci ( - 109 ≤ xi, ci ≤ 109). The numbers are space-separated. Each description is given on a separate line. No two marbles have identical initial positions.
Output the single number — the least fine you will have to pay.
3
2 3
3 4
1 2
5
4
1 7
3 1
5 10
6 1
11
题意:
有n个小球,所有小球都在一条线上,以该线为x轴,每个球在x轴上都有各自的位置,所有小球都有各自固定的费用。
初始状态每个小球都未固定,为固定的小球会向x轴的负半轴滚动,直到碰到一个固定的小球。
小球滚动的距离也算是费用。选择哪些小球固定或不固定。
求滚动费用与固定费用之和最小为多少。
我们先将每个点按照坐标升序排序
dp[i][j]中一维表示进行到第几个点,二维表示最后一个被固定的点
则递推到i点时分两种情况:
1: i点固定(加上需要固定的费用,i点后的小球不会往前滚),那么有dp[i][i]=min(dp[i][i],dp[i-1][j]+p[i].c);
2: i点不固定(则需要加上从j点向前滚到i点的费用),那么有dp[i][j]=min(dp[i][j],dp[i-1][j]+p[i].x-p[j].x);
#include<bits/stdc++.h>
#define LL long long
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
int x;
int c;
}p[];
LL dp[][];
bool cmp(node one,node two)
{
return one.x<two.x;
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d%d",&p[i].x,&p[i].c);
}
sort(p+,p++n,cmp);
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
dp[i][j]=1e18;
}
dp[][]=p[].c;
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
{
dp[i][j]=min(dp[i][j],dp[i-][j]+p[i].x-p[j].x);
dp[i][i]=min(dp[i][i],dp[i-][j]+p[i].c);
}
}
LL ans=1e18;
for(int i=;i<=n;i++)
ans=min(ans,dp[n][i]);
printf("%ld\n",ans);
}一维:
- 题解:
- dp1[i]表示前i个球的最小花费,dp2[i]表示固定第i个球的最小花费。
- 则dp2[i]=dp1[i-1]+cost[i]。
- dp1[i]=dp2[j]+ans;
- ans表示j~i之间的球滚到了j位置的花费
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
struct node
{
ll id,cost;
}c[];
bool cmp(node a,node b)
{
return a.id<b.id;
}
ll dp1[],dp2[];
ll min1(ll a,ll b)
{
if(a>b)return b;
return a;
}
int main()
{
int n;scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lld%lld",&c[i].id,&c[i].cost);
sort(c+,c+n+,cmp);
dp1[]=dp2[]=c[].cost;
for(ll i=;i<=n;i++)
{
ll ans=;
dp1[i]=dp2[i]=dp1[i-]+c[i].cost;
for(ll j=i-;j>=;j--)
{
ans=ans+(c[j+].id-c[j].id)*(i-j);
dp1[i]=min1(dp1[i],dp2[j]+ans);
}
}
printf("%lld\n",dp1[n]);
return ;
}题意:给你每个求的位置以及在这个点修卡点的费用,每个球都会向左滚,求让所有球停下来的最小费用
思路:DP, 先处理出当前点之前都跑到第一个点的距离和,然后用dp[i]表示到第i个点的最小费用,假设停在了第j个点,那么我们就要算上[j, i]所有点都跑到j的距离和,还有要算上修j的费用,最后减去[j, i]要跑到第1点的距离
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long ll;
const ll inf = 1e15;
const int maxn = ; struct Node {
int x, c;
bool operator <(const Node &a) const {
return x < a.x;
}
} node[maxn]; ll sum[maxn], dp[maxn]; int main() {
int n;
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%d%d", &node[i].x, &node[i].c);
sort(node+, node++n);
sum[] = ;
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++)
sum[i] = sum[i-] + node[i].x - node[].x;
for (int i = ; i <= n; i++) {
dp[i] = inf;
for (int j = ; j <= i; j++)
dp[i] = min(dp[i], dp[j-]+sum[i]-sum[j-]-(ll)(node[j].x-node[].x)*(i-j+)+node[j].c);
}
printf("%lld\n", dp[n]);
return ;
}
Codeforces Problem - 38E - Let's Go Rolling!(DP)的更多相关文章
- 【CF】38E Let's Go Rolling! (dp)
前言 这题还是有点意思的. 题意: 给你 \(n\) (\(n<=3000\)) 个弹珠,它们位于数轴上.给你弹珠的坐标 \(x_i\) 在弹珠 \(i\) 上面花费 \(C_i\) 的钱 可以 ...
- codeforces #260 DIV 2 C题Boredom(DP)
题目地址:http://codeforces.com/contest/456/problem/C 脑残了. .DP仅仅DP到了n. . 应该DP到10w+的. . 代码例如以下: #include & ...
- Codeforces Round #260 (Div. 2)C. Boredom(dp)
C. Boredom time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- Codeforces Round #658 (Div. 2) D. Unmerge(dp)
题目链接:https://codeforces.com/contest/1382/problem/D 题意 给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后 ...
- codeforces#FF DIV2C题DZY Loves Sequences(DP)
题目地址:http://codeforces.com/contest/447/problem/C C. DZY Loves Sequences time limit per test 1 second ...
- codeforces#1152D. Neko and Aki's Prank(dp)
题目链接: https://codeforces.com/contest/1152/problem/D 题意: 给出一个$n$,然后在匹配树上染色边,每个结点的所有相邻边只能被染色一次. 问,这颗树上 ...
- Codeforces 766C:Mahmoud and a Message(DP)
题目链接:http://codeforces.com/problemset/problem/766/C 题意 有一个长度为n的字符串,第二行有26个数字,位置1~26对应为a~z的字母,数值表示该字母 ...
- codeforces 811 C. Vladik and Memorable Trip(dp)
题目链接:http://codeforces.com/contest/811/problem/C 题意:给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都要出现在这个区间. 每个区间 ...
- Educational Codeforces Round 16 E. Generate a String (DP)
Generate a String 题目链接: http://codeforces.com/contest/710/problem/E Description zscoder wants to gen ...
随机推荐
- Python 字符串概念和操作
# 字符串概念:由单个字符串组成的一个集合 # 普通字符串(非原始字符串) str = "abc" print(str) # abc # 原始字符串(前面加r) str = r&q ...
- LCN协调者服务集群
官方文档: https://github.com/codingapi/tx-lcn/wiki/TxManager%E9%9B%86%E7%BE%A4%E8%AF%B4%E6%98%8E 核心原理 通过 ...
- Python之面向对象总结
一.面向对象 1.面向过程 a.优点:极大的降低了写程序的复杂度,只需要顺着执行的步骤,堆叠代码即可 b.缺点:一套流水线或者流程就是来解决一个问题,代码就是牵一发而东莞全身 2.面向对象 a.优点: ...
- maven环境变量配置不成功的原因
在配置java开发环境时,MAVEN_HOME配置后,再将%MAVEN_HOME%\bin加入path后,mvn -v 不成功,显示mvn不是内部命令 网上寻觅各种办法无果 于是弃用MAVEN_HOM ...
- 转 Nova: 虚机的块设备总结 [Nova Instance Block Device]
和物理机一样,虚拟机包括几个重要的部分:CPU.内存.磁盘设备.网络设备等.本文将简要总结虚机磁盘设备有关知识. 1. Nova boot CLI 中有关虚机块设备的几个参数 nova boot CL ...
- hdu6242 计算几何
题意:给你n个点,要求找到一个点,和一个圆心,使得有n/2向上取整个点在圆上,一定有满足条件的点存在 题解:既然一定有解,而且圆上有n/2向上取整个点,那么我们可以通过随机来找三个点来确定一个圆心,和 ...
- linux(ubuntu16.04)下安装和破解pycharm专业版
我用的linux 版本是ubuntu,查看版本命令是: lsb_release -a 因为学习Python爬虫,pycharm是Python很好用的IDE,但是专业版需要付费,所以开始安装: 首先在官 ...
- GEF入门实例_总结_06_为编辑器添加内容
一.前言 本文承接上一节:GEF入门实例_总结_05_显示一个空白编辑器 在上一节我们为我们的插件添加了一个空白的编辑器,这一节我们将为此编辑器添加内容. 二.GEF的MVC模式 在此只简单总结一下, ...
- python编程实例-统计apache进程占用的物理内存
#!/usr/bin/env python import os from subprocess import PIPE,Popen def getPids(): p = Popen(['pidof', ...
- Nhibernate系列学习之(三) Criteria查询表达式增删改查
Criteria查询表达式: 正如我们所见,Expression对查询语句的表达式进行了封装和限制,下表列出了Expression所有的方法,以及每个方法所对应的查询表达式及其限制. Restrict ...