ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)
Description
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.
Input
The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.
Output
For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.
Sample Input
4
2
4
5
231
Sample Output
1 2 5
2 4 13
3 5 21
4 231 32549
题目大意就是求不同种斜率的个数。
第一反应的话枚举所有斜率,然后去掉相同斜率,而相同斜率的特征的就是,斜率的分子分母约分后和其中某个斜率一质。
于是,我只需要考虑分子分母互质的斜率即可。
于是就可以枚举斜率的分母或者分子,如果枚举斜率的分母,
比如x = 1,那么y只能取1
x = 2,那么y取[1, 2]与2互质的数,
x = 3, 那么y取[1, 3]与3互质的数
…
…
(注意x = n, y = 0和x = 0, y = 1也要加上。)
于是整个结果就是x取遍[1, n],y取遍[1, n]求互质的对数。
这和之前的一道莫比乌斯一样,不过k取1,这样就可以用容斥或者莫比乌斯解决了。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define LL long long using namespace std; const int maxN = 1005;
int n;
int prime[maxN], u[maxN];
bool vis[maxN]; void mobius()
{
memset(vis, false,sizeof(vis));
u[1] = 1;
int cnt = 0;
for(int i = 2; i < maxN; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
u[i] = -1;
}
for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
{
vis[i*prime[j]] = true;
if(i%prime[j])
u[i*prime[j]] = -u[i];
else
{
u[i*prime[j]] = 0;
break;
}
}
}
} void work()
{
LL ans = 0;
for (int i = 1; i <= n; ++i)
ans += (LL)u[i]*(n/i)*(n/i);
printf("%I64d\n", ans+2);
} int main()
{
//freopen("test.in", "r", stdin);
mobius();
int T;
scanf("%d", &T);
for (int times = 1; times <= T; ++times)
{
scanf("%d", &n);
printf("%d %d ", times, n);
work();
}
return 0;
}
ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)的更多相关文章
- POJ3090 Visible Lattice Points
/* * POJ3090 Visible Lattice Points * 欧拉函数 */ #include<cstdio> using namespace std; int C,N; / ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- Visible Lattice Points (莫比乌斯反演)
Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...
- POJ3090 Visible Lattice Points 欧拉函数
欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...
- ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)
Description There are N points in total. Every point moves in certain direction and certain speed. W ...
- POJ3090 Visible Lattice Points (数论:欧拉函数模板)
题目链接:传送门 思路: 所有gcd(x, y) = 1的数对都满足题意,然后还有(1, 0) 和 (0, 1). #include <iostream> #include <cst ...
- [POJ3090]Visible Lattice Points(欧拉函数)
答案为3+2*∑φ(i),(i=2 to n) Code #include <cstdio> int T,n,A[1010]; void Init(){ for(int i=2;i< ...
- ACM学习历程—HDU 5072 Coprime(容斥原理)
Description There are n people standing in a line. Each of them has a unique id number. Now the Ragn ...
随机推荐
- Keepalived 集群在Linux下的搭建
[概述]:Keepalived 是一个免费开源的,用C编写.主要提供loadbalancing(负载均衡)和 high-availability(高可用)功能,负载均衡实现需要依赖Linux的虚拟服务 ...
- 自定义 ViewController 容器转场
本文转载至 http://blog.csdn.net/yongyinmg/article/details/40621463 在话题 #5 中,Chris Eidhof 向我们介绍了 iOS7 引入的新 ...
- 研究怎么运用xcode处理常见的调试问题
本文转载至 http://blog.csdn.net/zhuzhihai1988/article/details/7749022 所谓磨刀不误砍柴工,这里菜鸟我在研究怎么运用xcode处理常见的调试问 ...
- mybatis注解实现CURD
我们来看下面这段代码: /** * The user Mapper interface. * * @author Wangzun * * @version 1.0 * * */ @CacheNames ...
- poj1135
Domino Effect Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10454 Accepted: 2590 De ...
- Python PhatomJS 和Selenium动态加载页面 获取图片内容
如果您觉得感兴趣的话,可以添加我的微信公众号:一步一步学Python.Write().Seek().Close()等方法.设 想我们有如下接口 ...
- Linux改动hostname的两个办法
假设你想把主机名改为 linux的话.两中方法: 1. # hostname linux 这样改动了以后马上生效.可是重新启动后就没了 2. # vi /etc/sysconfig/network 改 ...