ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)
Description
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.
Input
The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.
Output
For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.
Sample Input
4
2
4
5
231
Sample Output
1 2 5
2 4 13
3 5 21
4 231 32549
题目大意就是求不同种斜率的个数。
第一反应的话枚举所有斜率,然后去掉相同斜率,而相同斜率的特征的就是,斜率的分子分母约分后和其中某个斜率一质。
于是,我只需要考虑分子分母互质的斜率即可。
于是就可以枚举斜率的分母或者分子,如果枚举斜率的分母,
比如x = 1,那么y只能取1
x = 2,那么y取[1, 2]与2互质的数,
x = 3, 那么y取[1, 3]与3互质的数
…
…
(注意x = n, y = 0和x = 0, y = 1也要加上。)
于是整个结果就是x取遍[1, n],y取遍[1, n]求互质的对数。
这和之前的一道莫比乌斯一样,不过k取1,这样就可以用容斥或者莫比乌斯解决了。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define LL long long using namespace std; const int maxN = 1005;
int n;
int prime[maxN], u[maxN];
bool vis[maxN]; void mobius()
{
memset(vis, false,sizeof(vis));
u[1] = 1;
int cnt = 0;
for(int i = 2; i < maxN; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
u[i] = -1;
}
for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
{
vis[i*prime[j]] = true;
if(i%prime[j])
u[i*prime[j]] = -u[i];
else
{
u[i*prime[j]] = 0;
break;
}
}
}
} void work()
{
LL ans = 0;
for (int i = 1; i <= n; ++i)
ans += (LL)u[i]*(n/i)*(n/i);
printf("%I64d\n", ans+2);
} int main()
{
//freopen("test.in", "r", stdin);
mobius();
int T;
scanf("%d", &T);
for (int times = 1; times <= T; ++times)
{
scanf("%d", &n);
printf("%d %d ", times, n);
work();
}
return 0;
}
ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)的更多相关文章
- POJ3090 Visible Lattice Points
/* * POJ3090 Visible Lattice Points * 欧拉函数 */ #include<cstdio> using namespace std; int C,N; / ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- Visible Lattice Points (莫比乌斯反演)
Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...
- POJ3090 Visible Lattice Points 欧拉函数
欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...
- ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)
Description There are N points in total. Every point moves in certain direction and certain speed. W ...
- POJ3090 Visible Lattice Points (数论:欧拉函数模板)
题目链接:传送门 思路: 所有gcd(x, y) = 1的数对都满足题意,然后还有(1, 0) 和 (0, 1). #include <iostream> #include <cst ...
- [POJ3090]Visible Lattice Points(欧拉函数)
答案为3+2*∑φ(i),(i=2 to n) Code #include <cstdio> int T,n,A[1010]; void Init(){ for(int i=2;i< ...
- ACM学习历程—HDU 5072 Coprime(容斥原理)
Description There are n people standing in a line. Each of them has a unique id number. Now the Ragn ...
随机推荐
- Myecplise Tomcat 启动很慢
今天突然遇到一个问题,tomcat在Myecplse启动非常慢,直接用tomcat自带的start.bat启动很快,如果通过Myeclipse启动会发现项目一直在实例化,最后发现是因为加了断点调试,断 ...
- 【BZOJ3744】Gty的妹子序列 分块+树状数组
[BZOJ3744]Gty的妹子序列 Description 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzo ...
- echart 图表自定义样式
initChart: function (id) { this.charts = echarts.init(document.getElementById(id)) this.charts.setOp ...
- 记录-JQuery日历插件My97DatePicker日期范围限制
对于日期控件,有时会有不能选择今天以前的日期这种需求..... My97DatePicker是一个非常优秀的日历插件,不仅支持多种调用模式,还支持日期范围限制. 常规的调用比较简单,如下所示: 1 & ...
- 九度OJ 1197:奇偶校验 (基础题)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3590 解决:1511 题目描述: 输入一个字符串,然后对每个字符进行奇校验,最后输出校验后的二进制数(如'3',输出:10110011). ...
- 【python】-- paramiko、跳板机(堡垒机)
paramiko Python的paramiko模块,该模块用于连接远程服务器并执行相关命令,常用于作批量管理使用 一.下载: pip3 install paramiko 源码:查看 二.parami ...
- SSAS(SQL Server 分析服务)、***S(SQL Server报表服务)、SSIS(SQL Server集成服务)
一.数据仓库入门 实验手册 1. 创建数据源 http://jimshu.blog.51cto.com/3171847/13366622. 创建数据源视图 http://jimshu.blog.51 ...
- SMARTFORMS自定义打印格式
[转自 http://lz357502668.blog.163.com/blog/static/16496743201272155135570/] 在sap的打印开发中经常需要自定义纸张,具体步骤如下 ...
- ABAP下载服务器文件到本机
转自http://blog.sina.com.cn/s/blog_701594f40100l8ml.html ABAP:下载服务器文件到本机 对服务器的文件进行读写操作,SAP提供了OPEN DATA ...
- 【学习】Spring 的 AOP :基于Annotation 的“零配置”方式
转自:http://www.cnblogs.com/jbelial/archive/2012/07/20/2539123.html AOP(Aspect Orient Programming ) , ...