ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)
Description
A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.
Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, y ≤ N.
Input
The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.
Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.
Output
For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.
Sample Input
4
2
4
5
231
Sample Output
1 2 5
2 4 13
3 5 21
4 231 32549
题目大意就是求不同种斜率的个数。
第一反应的话枚举所有斜率,然后去掉相同斜率,而相同斜率的特征的就是,斜率的分子分母约分后和其中某个斜率一质。
于是,我只需要考虑分子分母互质的斜率即可。
于是就可以枚举斜率的分母或者分子,如果枚举斜率的分母,
比如x = 1,那么y只能取1
x = 2,那么y取[1, 2]与2互质的数,
x = 3, 那么y取[1, 3]与3互质的数
…
…
(注意x = n, y = 0和x = 0, y = 1也要加上。)
于是整个结果就是x取遍[1, n],y取遍[1, n]求互质的对数。
这和之前的一道莫比乌斯一样,不过k取1,这样就可以用容斥或者莫比乌斯解决了。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define LL long long using namespace std; const int maxN = 1005;
int n;
int prime[maxN], u[maxN];
bool vis[maxN]; void mobius()
{
memset(vis, false,sizeof(vis));
u[1] = 1;
int cnt = 0;
for(int i = 2; i < maxN; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
u[i] = -1;
}
for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
{
vis[i*prime[j]] = true;
if(i%prime[j])
u[i*prime[j]] = -u[i];
else
{
u[i*prime[j]] = 0;
break;
}
}
}
} void work()
{
LL ans = 0;
for (int i = 1; i <= n; ++i)
ans += (LL)u[i]*(n/i)*(n/i);
printf("%I64d\n", ans+2);
} int main()
{
//freopen("test.in", "r", stdin);
mobius();
int T;
scanf("%d", &T);
for (int times = 1; times <= T; ++times)
{
scanf("%d", &n);
printf("%d %d ", times, n);
work();
}
return 0;
}
ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)的更多相关文章
- POJ3090 Visible Lattice Points
/* * POJ3090 Visible Lattice Points * 欧拉函数 */ #include<cstdio> using namespace std; int C,N; / ...
- SPOJ 7001. Visible Lattice Points (莫比乌斯反演)
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- Visible Lattice Points (莫比乌斯反演)
Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...
- POJ3090 Visible Lattice Points 欧拉函数
欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...
- ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)
Description There are N points in total. Every point moves in certain direction and certain speed. W ...
- POJ3090 Visible Lattice Points (数论:欧拉函数模板)
题目链接:传送门 思路: 所有gcd(x, y) = 1的数对都满足题意,然后还有(1, 0) 和 (0, 1). #include <iostream> #include <cst ...
- [POJ3090]Visible Lattice Points(欧拉函数)
答案为3+2*∑φ(i),(i=2 to n) Code #include <cstdio> int T,n,A[1010]; void Init(){ for(int i=2;i< ...
- ACM学习历程—HDU 5072 Coprime(容斥原理)
Description There are n people standing in a line. Each of them has a unique id number. Now the Ragn ...
随机推荐
- c语言三元组
// Triplet.cpp : 定义控制台应用程序的入口点.//#include "stdio.h"#include "stdlib.h"#define OK ...
- 怎样过滤跨站恶意脚本攻击(XSS)
什么是XSS? XSS(Cross Site Scripting),即跨站脚本攻击,是一种常见于web application中的计算机安全漏洞.XSS通过在用户端注入恶意的可运行脚本,若服务器端对用 ...
- sharding-jdbc从入门到出门(03)
经过端午节这2天对 sharding-jdbc一直怀揣成梦想的去学习,还是有一些没有解决的问题: 上一张图:
- nginx学习之web服务器(四)
1. 定义一个虚拟服务器 http { server { # Server configuration } } 可以在http {}块里面添加多个server {}块,每一个server {}块代表一 ...
- linux c编程:文件夹操作
创建目录: 用mkdir函数创建目录: mkdir(const char *pathname, mode_t mode) 参数mode有下列的组合: S_ISUID 04000 文件的执行时设置用户I ...
- Symfony 如何使用ckeditor
首先: 1)加载以下两个bundle "egeloen/ckeditor-bundle": "^4.0","helios-ag/fm-elfinder ...
- [转载]Hibernate如何提升数据库查询的性能
目录(?)[-] 数据库查询性能的提升也是涉及到开发中的各个阶段在开发中选用正确的查询方法无疑是最基础也最简单的 SQL语句的优化 使用正确的查询方法 使用正确的抓取策略 Hibernate的性能优化 ...
- gsub! 和 gsub
ruby中带“!"和不带"!"的方法的最大的区别就是带”!"的会改变调用对象本身了.比方说str.gsub(/a/, 'b'),不会改变str本身,只会返回一个 ...
- Data Structure Linked List: Merge Sort for Linked Lists
http://www.geeksforgeeks.org/merge-sort-for-linked-list/ #include <iostream> #include <vect ...
- Data Structure Binary Tree: Check if a given Binary Tree is SumTree
http://www.geeksforgeeks.org/check-if-a-given-binary-tree-is-sumtree/ #include <iostream> #inc ...