Description

A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, yN.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4

2

4

5

231

Sample Output

1 2 5

2 4 13

3 5 21

4 231 32549

题目大意就是求不同种斜率的个数。

第一反应的话枚举所有斜率,然后去掉相同斜率,而相同斜率的特征的就是,斜率的分子分母约分后和其中某个斜率一质。

于是,我只需要考虑分子分母互质的斜率即可。

于是就可以枚举斜率的分母或者分子,如果枚举斜率的分母,

比如x = 1,那么y只能取1

x = 2,那么y取[1, 2]与2互质的数,

x = 3, 那么y取[1, 3]与3互质的数

(注意x = n, y = 0和x = 0, y = 1也要加上。)

于是整个结果就是x取遍[1, n],y取遍[1, n]求互质的对数。

这和之前的一道莫比乌斯一样,不过k取1,这样就可以用容斥或者莫比乌斯解决了。

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#define LL long long using namespace std; const int maxN = 1005;
int n;
int prime[maxN], u[maxN];
bool vis[maxN]; void mobius()
{
memset(vis, false,sizeof(vis));
u[1] = 1;
int cnt = 0;
for(int i = 2; i < maxN; i++)
{
if(!vis[i])
{
prime[cnt++] = i;
u[i] = -1;
}
for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
{
vis[i*prime[j]] = true;
if(i%prime[j])
u[i*prime[j]] = -u[i];
else
{
u[i*prime[j]] = 0;
break;
}
}
}
} void work()
{
LL ans = 0;
for (int i = 1; i <= n; ++i)
ans += (LL)u[i]*(n/i)*(n/i);
printf("%I64d\n", ans+2);
} int main()
{
//freopen("test.in", "r", stdin);
mobius();
int T;
scanf("%d", &T);
for (int times = 1; times <= T; ++times)
{
scanf("%d", &n);
printf("%d %d ", times, n);
work();
}
return 0;
}

ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)的更多相关文章

  1. POJ3090 Visible Lattice Points

    /* * POJ3090 Visible Lattice Points * 欧拉函数 */ #include<cstdio> using namespace std; int C,N; / ...

  2. SPOJ 7001. Visible Lattice Points (莫比乌斯反演)

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  3. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. Visible Lattice Points (莫比乌斯反演)

    Visible Lattice Points 题意 : 从(0,0,0)出发在(N,N,N)范围内有多少条不从重合的直线:我们只要求gcd(x,y,z) = 1; 的点有多少个就可以了: 比如 : 点 ...

  5. POJ3090 Visible Lattice Points 欧拉函数

    欧拉函数裸题,直接欧拉函数值乘二加一就行了.具体证明略,反正很简单. 题干: Description A lattice point (x, y) in the first quadrant (x a ...

  6. ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)

    Description There are N points in total. Every point moves in certain direction and certain speed. W ...

  7. POJ3090 Visible Lattice Points (数论:欧拉函数模板)

    题目链接:传送门 思路: 所有gcd(x, y) = 1的数对都满足题意,然后还有(1, 0) 和 (0, 1). #include <iostream> #include <cst ...

  8. [POJ3090]Visible Lattice Points(欧拉函数)

    答案为3+2*∑φ(i),(i=2 to n) Code #include <cstdio> int T,n,A[1010]; void Init(){ for(int i=2;i< ...

  9. ACM学习历程—HDU 5072 Coprime(容斥原理)

    Description There are n people standing in a line. Each of them has a unique id number. Now the Ragn ...

随机推荐

  1. 图片剪裁控件——ClipImageView

    这段时间在做自己的项目时,须要使用到图片剪裁功能,当时大概的思考了一些需求.想到了比較简单的实现方法.因此就抽了点时间做了这个图片剪裁控件--ClipImageView 这里先贴上ClipImageV ...

  2. HBase核心技术点

    表的rowkey设计核心思想: 依据rowkey查询最快 对rowkey进行范围查询range 前缀匹配 预分区创建的三种方式 create 'ns1:t1', 'f1', SPLITS => ...

  3. 记录-移动端网页触摸内容滑动js插件

    需求: 在webapp中需要左右滑动手机,移动主页的轮播图.也可用在引导页(欢迎页)的大图左右滑动 可用: 百度:swiper插件 在项目中导入插件,这里只有部分代码,具体百度swiper <l ...

  4. iOS NSError HTTP错误码大全

    NSError codes in the Cocoa error domain. enum { NSFileNoSuchFileError = 4, NSFileLockingError = 255, ...

  5. 洛谷P2402 奶牛隐藏

    洛谷P2402 奶牛隐藏 题目背景 这本是一个非常简单的问题,然而奶牛们由于下雨已经非常混乱,无法完成这一计算,于是这个任务就交给了你.(奶牛混乱的原因看题目描述) 题目描述 在一个农场里有n块田地. ...

  6. centos修改mysql密码或者进入mysql后解决Access denied for user ''@'localhost' to database 'mysql错误

    原因是MySQL的密码有问题 用mysql匿名用户可以进入数据库,但是看不见mysql数据库. 解决办法:具体操作步骤:关闭mysql:# service mysqld stop然后:# mysqld ...

  7. Android系统移植与调试之------->MTK 标准编译命令

    命令格式:./maketek [option] [project] [action] [modules]Option:   -t ,-tee :输出log信息到当前终端   -o , -opt=-- ...

  8. Action三种编写方式

    1.     创建普通类不实现接口与继承类 2.     实现Action接口 3.     继承ActionSupport类(常用)

  9. centos install docker setup centos7 安装docker

    centos7 安装docker 1: 安装必要的一些系统工具sudo yum install -y yum-utils device-mapper-persistent-data lvm2 2: 添 ...

  10. Unknown Entity namespace alias 'BaseMemberBundle'.

    $em = $this->getDoctrine()->getManager('member');//要记得写上member $repo = $em->getRepository(' ...