OpenCV2马拉松第5圈——线性滤波
收入囊中
Vision: Algorithms and ApplicationsのImage processing中都有讲过
- 相关和卷积工作原理
- 边界处理
- 滤波器的工作原理
- 会使用均值滤波,高斯滤波
- 使用自己创造的核函数进行双线性滤波
- 可分离的滤波(加速)
葵花宝典
- 0填充。非常easy的处理方式
- 常数填充
- 夹取填塞(clamp),不断地复制边缘像素的值
- 重叠填塞(wrap),以环状形态围绕图像进行循环
- 镜像填塞(mirror),像素围绕图像边界进行镜像反射
- 延长(extend)。通过在边缘像素值中减去镜像信号的方式延长信号
/*
Various border types, image boundaries are denoted with '|' * BORDER_REPLICATE: aaaaaa|abcdefgh|hhhhhhh
* BORDER_REFLECT: fedcba|abcdefgh|hgfedcb
* BORDER_REFLECT_101: gfedcb|abcdefgh|gfedcba
* BORDER_WRAP: cdefgh|abcdefgh|abcdefg
* BORDER_CONSTANT: iiiiii|abcdefgh|iiiiiii with some specified 'i'
*/
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
初识API
-
C++: void blur(InputArray src,
OutputArray dst, Size ksize, Point anchor=Point(-1,-1), int borderType=BORDER_DEFAULT )
-
- src – 原始图像
- dst – 输出图像
- ksize – 核函数大小
- anchor – 锚点,普通情况下默觉得(-1,-1)。意味着在中心进行卷积
- borderType – 边界类型
The function smoothes an image using the kernel:
高斯滤波。对去除正态分布的噪声非常实用
-
C++: void GaussianBlur(InputArray src,
OutputArray dst, Size ksize, double sigmaX, double sigmaY=0, int borderType=BORDER_DEFAULT )
-
- src – 输入图像
- dst – 输出图像
- ksize – 核大小
- sigmaX – 控制幅度的參数(大家应该都学过或看过高斯函数吧,比方在正态分布中),假设sigmaX,sigmaY都为0,则由核的高度宽度自己计算
- sigmaY – 二维高斯函数有两个方向能够控制幅度。或这个不设置则和X一样
- borderType – 边界类型
用自己的核函数进行滤波
-
C++: void filter2D(InputArray src,
OutputArray dst, int ddepth, InputArray kernel, Point anchor=Point(-1,-1), double delta=0, intborderType=BORDER_DEFAULT )
-
- src – 输入图像.
- dst – 输出图像.
- depth – ddepth=-1,输出图像具有和输入图像一样的depth
- kernel – 核函数,单通道浮点矩阵
- anchor – 同之前
- delta – 可选,直接加到输出图像
- borderType – 边界类型
荷枪实弹
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
Mat src,dst;
int i = 1;
static void change_dst(int, void*)
{
if(i%2 == 0)i++;
blur( src, dst, Size( i, i ), Point(-1,-1));
imshow("dstImage", dst);
}
int main( int, char** argv )
{
src = imread( argv[1] );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1);
createTrackbar( "mean filter:", "dstImage", &i, 20, change_dst);
change_dst(0, 0);
imshow("srcImage", src);
waitKey();
return 0;
}
使用高斯滤波
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvYWJjZDE5OTI3MTln/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
Mat src,dst;
int i = 1;
static void change_dst(int, void*)
{
if(i%2 == 0)i++;
GaussianBlur( src, dst, Size( i, i ), 0, 0 );
imshow("dstImage", dst);
}
int main( int, char** argv )
{
src = imread( argv[1] );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1);
createTrackbar( "gauss filter:", "dstImage", &i, 20, change_dst);
change_dst(0, 0);
imshow("srcImage", src);
waitKey();
return 0;
}
使用自己定义线性滤波
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
Mat src,dst,Kernel;
int main( int, char** argv )
{
src = imread( argv[1] );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1);
Kernel = (Mat_<double>(3,3) << 1, 2, 1, 2, 4, 2, 1, 2, 1)/16;
filter2D(src, dst, -1 , Kernel, Point(-1,-1));
imshow("dstImage", dst);
imshow("srcImage", src);
waitKey();
return 0;
}
举一反三
K =vhT
将卷积核K拆分成列向量v和行向量h
-
C++: void sepFilter2D(InputArray src,
OutputArray dst, int ddepth, InputArray kernelX, InputArray kernelY, Point anchor=Point(-1,-1), doubledelta=0, int borderType=BORDER_DEFAULT )
-
- src – Source image.
- dst – Destination image of the same size and the same number of channels as src .
- ddepth –
- Destination image depth. The following combination of src.depth() and ddepth are
supported: -
- src.depth() = CV_8U, ddepth =
-1/CV_16S/CV_32F/CV_64F - src.depth() = CV_16U/CV_16S, ddepth =
-1/CV_32F/CV_64F - src.depth() = CV_32F, ddepth =
-1/CV_32F/CV_64F - src.depth() = CV_64F, ddepth =
-1/CV_64F
- src.depth() = CV_8U, ddepth =
when ddepth=-1, the destination image will have the same depth
as the source. - Destination image depth. The following combination of src.depth() and ddepth are
- kernelX – Coefficients for filtering each row.
- kernelY – Coefficients for filtering each column.
- anchor – Anchor position within the kernel. The default value
means
that the anchor is at the kernel center. - delta – Value added to the filtered results before storing them.
- borderType – Pixel extrapolation method. See
highlight=sepfilter2d#int%20borderInterpolate(int%20p,%20int%20len,%20int%20borderType)" rel="nofollow" title="int borderInterpolate(int p, int len, int borderType)" style="color:rgb(0,144,217);text-decoration:none;">borderInterpolate()
for
details.
參数基本没什么好讲,都是一样的,以下我们用这个函数来进行高斯卷积(滤波)
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
Mat src,dst,kernelX,kernelY;
int main( int, char** argv )
{
src = imread( argv[1] );
namedWindow("srcImage", 1);
namedWindow("dstImage", 1);
kernelX = (Mat_<double>(1,5) << 1,4,6,4,1)/16;
kernelY = (Mat_<double>(1,5) << 1,4,6,4,1)/16;
sepFilter2D(src, dst, -1, kernelX, kernelY);
imshow("dstImage", dst);
imshow("srcImage", src);
waitKey();
return 0;
}
OpenCV2马拉松第5圈——线性滤波的更多相关文章
- OpenCV2马拉松第15圈——边缘检測(Laplace算子,LOG算子)
收入囊中 拉普拉斯算子 LOG算子(高斯拉普拉斯算子) OpenCV Laplacian函数 构建自己的拉普拉斯算子 利用拉普拉斯算子进行图像的锐化 葵花宝典 在OpenCV2马拉松第14圈--边缘检 ...
- OpenCV2马拉松第17圈——边缘检測(Canny边缘检測)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 利用OpenCV Canny函数进行边缘检測 掌握Canny算法基本理论 ...
- OpenCV2马拉松第22圈——Hough变换直线检測原理与实现
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/27220445 收入囊中 Hough变换 概率Ho ...
- OpenCV2马拉松第14圈——边缘检測(Sobel,prewitt,roberts)
收入囊中 差分在边缘检測的角色 Sobel算子 OpenCV sobel函数 OpenCV Scharr函数 prewitt算子 Roberts算子 葵花宝典 差分在边缘检測究竟有什么用呢?先看以下的 ...
- OpenCV2马拉松第2圈——读写图片
收入囊中 用imread读取图片 用nameWindow和imshow展示图片 cvtColor彩色图像灰度化 imwrite写图像 Luv色彩空间转换 初识API 图像读取接口 image = im ...
- OpenCV2马拉松第10圈——直方图反向投影(back project)
收入囊中 灰度图像的反向投影 彩色图像的反向投影 利用反向投影做object detect 葵花宝典 什么是反向投影?事实上没有那么高大上! 在上一篇博文学到,图像能够获得自己的灰度直方图. 反向投影 ...
- OpenCV2马拉松第12圈——直方图比較
收入囊中 使用4种不同的方法进行直方图比較 葵花宝典 要比較两个直方图, 首先必需要选择一个衡量直方图相似度的对照标准.也就是先说明要在哪个方面做对照. 我们能够想出非常多办法,OpenCV採用了下面 ...
- openCV2马拉松第19圈——Harris角点检測(自己实现)
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g/article/details/26824529 收入囊中 使用OpenCV的con ...
- openCV2马拉松第18圈——坐标变换
计算机视觉讨论群162501053 转载请注明:http://blog.csdn.net/abcd1992719g 收入囊中 仿射变换 坐标映射 利用坐标映射做一些效果,例如以下 watermark/ ...
随机推荐
- kafka的offset和ProcessingGuarantee
https://blog.csdn.net/xianpanjia4616/article/details/84347087 https://m.2cto.com/net/201703/616024.h ...
- mybatis-Plus 增强版用法收藏
转载:http://www.cnblogs.com/okong/p/mybatis-plus-guide-one.html#xml%E5%BD%A2%E5%BC%8F https://blog.csd ...
- Linux 添加用户(user),组(Group)以及权限(Permission)
1. 添加用户 sudo adduser UserName 异常: sudo adduser --force-badname <username> 之后为这个用户添加其他辅助信息 切换用户 ...
- RobotFramework读取mysql和oracle数据库
一.robotframework连接mysql数据库 1.安装databaselibrary.pymysql 通过cmd命令执行:pip install robotframework-database ...
- 001 Two Sum 两个数的和为目标数字
Given an array of integers, return indices of the two numbers such that they add up to a specific ta ...
- 使用Dockerfile docker tomcat部署
在百度上试很多文章都不行,只有这篇可以. 宿主机为:centos64位 //安装docker 1:yum install docker //启动docker 2:systemctl start do ...
- 小程序 页面到详情的id传递
比如电影列表页跳转到电影详情页 在movie.js获取movieId; processDoubanData: function (moviesDouban, settedKey, categoryTi ...
- This blog Test the Open Live Writer
1. We print HELLOWORLD when we first learned to code, I want to Write this blog to test the software ...
- accecc2010入门,语文
accecc2010入门 数据库:存放数据并处理的仓库. access2010数据库(扩展名为accdb,改名时不能删扩展名): 1,功能区:代替了菜单栏和工具栏的功能,不用四处查找命令.在窗口下的顶 ...
- 装配bean,基于xml
一.bean的实例化方式 1.默认构造 <bean id="" class=""></bean> 必须提供默认构造方法 2.静态工厂 用 ...