51Nod 1558 树中的配对
题目链接
分析:
想了好久~~~还是得看题解...QwQ
首先因为是排列,所以我们猜想要把式子拆开来看, $ \sum dis(i,p[i])=\sum dep[i]+dep[p[i]]-2*dep[lca[i,p[i]]] $ ,定义 $ dep[i] $ 代表 $ i $ 到根节点的距离...
也就是说,其实我们只需要最小化$\sum dep[lca[i],p[i]]$...
我们如果考虑贪心的思想,那么显然$i$和$p[i]$不在一棵子树中的时候$lca$为$root$,那么$dep[lca]$为$0$,所以考虑能否找到一个合法的根节点,使得点两两配对并且不在一个子树中...
显然是可以的,这个优秀的根节点就是重心...
考虑重心的性质,去掉重心之后,每棵子树的大小都不会超多$\frac {n}{2}$,所以说一定存在合法的解...
那么考虑如何解决字典序最小的问题...
如果$u$和$v$匹配,但是$v$不一定和$u$匹配,所以我们把每个点拆成两个点,一个代表下标,一个代表排列,如果我们要找当前点匹配点,那么我们就去找到最大的子树,判断$size$是否刚好为当前点数的一半,如果是,那么我们就必须在这棵子树中找答案,否则就在非$u$的子树中找答案,然后在$u$的子树中删去$u$的下标点,在答案的子树中删去答案的排列点,然后用线段树维护子树内的标号最小值...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<set>
//by NeighThorn
#define inf 0x3f3f3f3f
#define Pa pair<int,int>
using namespace std; const int maxn=100000+5; int n,G,cnt,tim,w[maxn<<1],hd[maxn],to[maxn<<1],nxt[maxn<<1];
int be[maxn],en[maxn],siz[maxn],sub[maxn],maxsiz[maxn];
long long ans,dis[maxn]; set< pair<int,int> > s; set< pair<int,int> >::iterator it; struct M{
int l,r,Min;
}tree[maxn<<2]; inline void add(int x,int y,int s){
w[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
} inline void dfs(int x,int fa){
siz[x]=1;
for(int i=hd[x];i!=-1;i=nxt[i])
if(to[i]!=fa)
dfs(to[i],x),siz[x]+=siz[to[i]],maxsiz[x]=max(maxsiz[x],siz[to[i]]);
maxsiz[x]=max(maxsiz[x],n-siz[x]);
} inline void findG(void){
G=1;
for(int i=2;i<=n;i++)
if(maxsiz[G]>maxsiz[i]) G=i;
} inline void dfs(int x,int fa,int top){
sub[x]=top;siz[x]=1;be[x]=++tim;
for(int i=hd[x];i!=-1;i=nxt[i])
if(to[i]!=fa)
dis[to[i]]=dis[x]+w[i],dfs(to[i],x,top),siz[x]+=siz[to[i]];
en[x]=tim;
} inline void build(int l,int r,int tr){
tree[tr].l=l,tree[tr].r=r,tree[tr].Min=inf;
if(l==r) return;
int mid=(l+r)>>1;
build(l,mid,tr<<1),build(mid+1,r,tr<<1|1);
} inline void change(int x,int val,int tr){
if(tree[tr].l==tree[tr].r){
tree[tr].Min=val;return;
}
int mid=(tree[tr].l+tree[tr].r)>>1;
if(x<=mid)
change(x,val,tr<<1);
else
change(x,val,tr<<1|1);
tree[tr].Min=min(tree[tr<<1].Min,tree[tr<<1|1].Min);
} inline int query(int l,int r,int tr){
if(l>r) return inf;
if(tree[tr].l==l&&tree[tr].r==r)
return tree[tr].Min;
int mid=(tree[tr].l+tree[tr].r)>>1;
if(r<=mid)
return query(l,r,tr<<1);
else if(l>mid)
return query(l,r,tr<<1|1);
else
return min(query(l,mid,tr<<1),query(mid+1,r,tr<<1|1));
} inline void Minus(int x){
s.erase(s.find(Pa(siz[x],x)));
siz[x]--;
s.insert(Pa(siz[x],x));
} signed main(void){
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
scanf("%d",&n);
memset(hd,-1,sizeof(hd));
for(int i=1,x,y,l;i<n;i++)
scanf("%d%d%d",&x,&y,&l),add(x,y,l),add(y,x,l);
dfs(1,0);findG();memset(siz,0,sizeof(siz));be[G]=++tim;
for(int i=hd[G];i!=-1;i=nxt[i]) dis[to[i]]=dis[G]+w[i],dfs(to[i],G,to[i]),siz[G]+=siz[to[i]],siz[to[i]]<<=1;siz[G]++;siz[G]<<=1;
for(int i=hd[G];i!=-1;i=nxt[i]) s.insert(Pa(siz[to[i]],to[i]));s.insert(Pa(siz[G],G));
build(1,n,1);en[G]=be[G];sub[G]=G;
for(int i=1;i<=n;i++) ans+=dis[i]<<1;
cout<<ans<<endl;
for(int i=1;i<=n;i++) change(be[i],i,1);
for(int i=1,x;i<=n;i++){
Minus(sub[i]);
it=s.lower_bound(Pa(n-i+1,0));
if(it!=s.end()&&it->first==n-i+1)
x=query(be[it->second],en[it->second],1);
else
x=min(query(1,be[sub[i]]-1,1),query(en[sub[i]]+1,n,1)),x=min(x,query(be[G],be[G],1));
printf("%d ",x);Minus(sub[x]);change(be[x],inf,1);
}
return 0;
}
By NeighThorn
51Nod 1558 树中的配对的更多相关文章
- [51nod][cf468D]1558 树中的配对
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1558 不是很懂dalao们用线段树是怎么写的…… 反正找出重心以后每个子 ...
- 51nod 2494 最长配对
小b有一个01序列,她想找到一个最长的区间使得这个区间的01能两两配对,即0的个数和1的个数相等.求最长区间的长度. 收起 输入 第一行一个正整数n,表示数组长度,其中0<n≤50000: ...
- 「题解」「CF468D」树中的配对
目录 题目大意 思路 源代码 本博客除代码之外,来自 skylee 大佬. 题目大意 一棵\(n(n\le10^5)\)个编号为\(1\sim n\)的点的带边权的树,求一个排列\(p_{1\sim ...
- 51Nod 2006 飞行员配对(二分图最大匹配)
链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=2006 思路: 二分匹配 注意n m的关系 代码: #include ...
- 51Nod 2006 飞行员配对(二分图最大匹配)
第二次世界大战时期,英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2名飞行员,其中1名是英国飞行员,另1名是外籍飞行员.在众多的飞行员中, ...
- 51Nod 1737 配对(树的重心)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1737 题意: 思路: 树的重心. 树的重心就是其所以子树的最大的子树结点 ...
- 51nod 2006 飞行员配对
第二次世界大战时期,英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2名飞行员,其中1名是英国飞行员,另1名是外籍飞行员.在众多的飞行员中, ...
- 51Nod 2006 飞行员配对(二分图最大匹配)-匈牙利算法
2006 飞行员配对(二分图最大匹配) 题目来源: 网络流24题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 第二次世界大战时期,英国皇家空军从沦陷国 ...
- 51nod 1737配对
题意:给定一个n个点的带边权树, 保证n是偶数,给这个树两两配对,使得配对后的点路径和最大,输出最大值. 其实是个很简单的题,但还是被绊了.这充分说明现在连简单题都做不来了555 单独考虑每条边.每 ...
随机推荐
- Linux crontab 实现秒级定时任务
1 crontab 的延时: 原理:通过延时方法 sleep N 来实现每N秒执行. crontab -e 输入以下语句,然后 :wq 保存退出. * * * * * /usr/bin/curl ...
- php-5.6.26源代码 - PHP文件汇编成opcode(require、include的差异)
文件 php-5.6.26/Zend/zend_language_scanner.c ZEND_API zend_op_array *compile_file(zend_file_handle *fi ...
- thinkphp5控制器向+vue的data里传值
传一维数组传值 $array=['id'=>40,"cat_name"=>"明星产品"]; $MenuCats_info=json_encode($ ...
- 散列--数据结构与算法JavaScript描述(8)
散列 散列是一种常用的数据存储技术,散列后的数据可以快速地插入或取用. 散列使用的数据结构叫做散列表. 在散列表上插入.删除和取用数据都非常快,但是对于查找操作来说却效率低下,比如查找一组数据中的最大 ...
- Git-改变历史
悔棋 在日常的Git操作中,会经常出现这样的状况,输入git commit命令刚刚敲下回车键就后悔了:可能是提交说明中出现了错别字,或者有文件忘记提交,或者有的修改不应该提交,诸如此类. Git提供了 ...
- PHP.TP框架下商品项目的优化2-图片优化
图片存储.上传.显示优化 1.图片路径写进配置文件,当路径有变动时[因业务扩大,服务器存储图片空间不足等],只需修改配置文件,而不用修改代码 2.封装显示.上传.删除函数,实现代码重用 [可类比其他类 ...
- Java集合——LinkedHashMap源码详解
个KV.LinkedHashMap不仅像HashMap那样对其进行基于哈希表和单链表的Entry数组+ next链表的存储方式,而且还结合了LinkedList的优点,为每个Entry节点增加了前驱和 ...
- 从键盘输入数,输出它们的平方值&判断是不是2的阶次方数
1.从键盘输入两个整数,然后输出它们的平方值和立方值 在Java中,没有像C语言那样有一个专供接受键盘输入值的scanf函数,所以一般的做法是从键盘输入一行字符,保存到字符串s中,再将字符组成的字符串 ...
- java和c/c++
写c/c++的人,羡慕java可以自己管理内存 写java的人,羡慕c/c++没有gc问题
- 《Cracking the Coding Interview》——第1章:数组和字符串——题目7
2014-03-18 01:55 题目:给定一个MxN矩阵,如果某个元素为0,则将对应的整行和整列置为0. 解法:单独挑出一行和一列作为标记数组.因为某元素为0就全部置为0,所以不论A[i][j]为0 ...