题目大意

给你n个凸多边形,求多边形的交的面积

分析

题意\(=\)给你一堆边,让你求半平面交的面积

做法

半平面交模板

1.定义半平面为向量的左侧

2.将所有向量的起点放到一个中心,以中心参照进行逆时针极角排序

但是直接按叉积排序会转圈圈

于是我们从\(x\)轴负半轴开始逆时针旋转,将坐标轴分为上下两部(\(x\)轴属于下部)

当两个向量终点的\(y\)都在x轴上时,按x从小到大排

当两个向量终点同在上部/同在下部时,按叉积排(平行按左右排)

当一上一下时,下部的排前

注意:快排时像我这样贪方便,在cmp里swap一下想都不想的人也是很罕见的

3.考虑下面这样一幅图



黑色为原半平面交的边界,蓝色为新加入的向量

不难发现当之前交点在蓝色右边时,向量1要被删掉

这样的话,每次新加入向量,就会删掉在向量右边的交点(线上的也要删)

最后会在所有交点的右边,画幅图出来发现这和凸包是非常像的

然后考虑下面的一幅图



发现我们维护的凸包首尾都是要删除的

所以我们要写一个双端队列

4.考虑平行的两个向量,一定是保留最左的一个

5.考虑下面这幅图



图上的边搞完之后都还是在双端队列里的

但是:最后带红色标记的那一条边是无效的,为什么呢?

因为凸包首尾是连起来的!

所以最后还要模拟插入队头,把队尾中多余的半平面去掉

6.如果题目没有保证半平面封闭,就加上一个超大的四边形限制

推广

uoj的一篇博客写的很棒,证明也很棒,还提到了一种先求上凸壳,再求下凸壳,再把两边多出来的部分删掉的方法   搓这

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef double db;
const int M=507; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int n,m,tt; struct pt{
db x,y;
pt(db xx=0,db yy=0){x=xx;y=yy;}
}p[M],a[M];
pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
pt operator *(pt x,db d){return pt(x.x*d,x.y*d);}
pt operator /(pt x,db d){return pt(x.x/d,x.y/d);}
db slop(pt x){return x.y/x.x;}
db dot(pt x,pt y){return x.x*y.x+x.y*y.y;}
db det(pt x,pt y){return x.x*y.y-x.y*y.x;}
db len(pt x){return sqrt(dot(x,x));}
db dis(pt x,pt y){return len(y-x);}
db area(pt x,pt y,pt z){return det(y-x,z-x);} struct line{
pt P,v;
line(pt PP=pt(),pt vv=pt()){P=PP;v=vv;}
}l[M],s[M]; pt inter(line x,line y){
pt u=x.P-y.P;
db t=det(u,y.v)/det(y.v,x.v);
return x.P+x.v*t;
}
bool parallel(line x,line y){return det(y.v,x.v)==0;}
bool lineleft(line x,line y){
db tp=det(x.v,y.v);
return (tp>0)||((tp==0)&&det(x.v,y.P-x.P)>0);
}
bool ptright(pt x,line y){return det(y.v,x-y.P)<=0;}///<= bool cmp(line x,line y){//极角排序
if(x.v.y==0 && y.v.y==0) return x.v.x<y.v.x;//y都为0
if(x.v.y<=0 && y.v.y<=0) return lineleft(x,y);//同在上部
if(x.v.y>0 && y.v.y>0 ) return lineleft(x,y);//同在下部
return x.v.y<y.v.y;//一上一下
} void hpi(){//half-plane intersection
sort(l+1,l+m+1,cmp);//sort
int tp=0,i;
for(i=1;i<=m;i++){
if(i==1||!parallel(l[i],l[i-1])) tp++;//平行特判
l[tp]=l[i];
}
m=tp;
int L=1,R=2;
s[1]=l[1],s[2]=l[2];
for(i=3;i<=m;i++){
while(L<R && ptright(inter(s[R],s[R-1]),l[i])) R--;
while(L<R && ptright(inter(s[L],s[L+1]),l[i])) L++;
s[++R]=l[i];
}
while(L<R && ptright(inter(s[R],s[R-1]),s[L])) R--;//最后删除无用平面
if(R-L<=1){//若半平面交退化为点或线
puts("0.000");
return;
}
tp=0;
s[L-1]=s[R];
for(i=L;i<=R;i++) a[++tp]=inter(s[i],s[i-1]);//求出相邻两边的交点,转化为凸包的记录方法
db ans=0;
for(i=3;i<=tp;i++) ans+=area(a[1],a[i-1],a[i])*0.5;
printf("%.3lf",ans);//求面积
} int main(){ int i,x,y,z,st;
tt=rd();
n=m=0;
while(tt--){
z=rd();
st=n+1;
while(z--){
x=rd(),y=rd();
p[++n]=pt(x,y);
if(n>st) l[++m]=line(p[n-1],p[n]-p[n-1]);
}
l[++m]=line(p[n],p[st]-p[n]);
} hpi(); return 0;
}

bzoj 2618 半平面交模板+学习笔记的更多相关文章

  1. POJ 3525 /// 半平面交 模板

    题目大意: 给定n,接下来n行逆时针给定小岛的n个顶点 输出岛内离海最远的点与海的距离 半平面交模板题 将整个小岛视为由许多半平面围成 那么以相同的比例缩小这些半平面 一直到缩小到一个点时 那个点就是 ...

  2. bzoj 2618【半平面交模板】

    #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> usin ...

  3. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  4. 半平面交模板(O(n*n)&& O(n*log(n))

    摘自http://blog.csdn.net/accry/article/details/6070621 首先解决问题:什么是半平面? 顾名思义,半平面就是指平面的一半,我们知道,一条直线可以将平面分 ...

  5. POJ 半平面交 模板题 三枚

    给出三个半平面交的裸题. 不会的上百度上谷(gu)歌(gou)一下. 毕竟学长的语文是体育老师教的.(卡格玩笑,别当真.) 这种东西明白就好,代码可以当模板. //poj1474 Video Surv ...

  6. 再来一道测半平面交模板题 Poj1279 Art Gallery

    地址:http://poj.org/problem?id=1279 题目: Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. C++模板学习笔记

    一个有趣的东西:实现一个函数print, 输入一个数组, 输出数组的各个维度长度. eg. ], b[][], c[][][]; print(a); //(2, 4) print(b); //(3, ...

  8. 初步C++类模板学习笔记

    类模板 实现:在上课时间的定义给它的一个或多个参数,这些参数代表了不同的数据类型.                              -->抽象的类. 在调用类模板时, 指定參数, 由编 ...

  9. tornada模板学习笔记

    import tornado.web import tornado.httpserver import tornado.ioloop import tornado.options import os. ...

随机推荐

  1. datatable常用设置

    bSort: false, // 是否排序功能 bFilter: false, // 过滤功能 bPaginate: true, // 翻页功能 bInfo: true, // 页脚信息 bProce ...

  2. 使用IDEA将本地项目上传到GitHub

    00.首先保证git和github能够使用ssh连接. 01.在GitHub上新建仓库 需要注意的是不要勾选Initialize this repository with a README. 02.在 ...

  3. php 利用composer引用第三方类库构建项目

    经常看到各种开源库推荐使用 composer 安装代码,却总是看不懂怎么用composer, 这几天静下心来学习了composer的使用,发现这可真是一个好东西,先贴上一个讲的很棒的视频教程: PHP ...

  4. #Python编程从入门到实践#第三章笔记

      列表简介 ​​​1.什么是列表 列表:由一系列按也顶顺序排列的元素组成.元素之间可以没有任何关系. 列表:用方括号[]表示,并用逗号分隔其中元素.名称一般为复数 2.访问元素 (1)列表是有序集合 ...

  5. ELK之Elasticsearch

    安装并运行Elasetisearch cd elasticsearch-<version> ./bin/elasticsearch 如果你想把 Elasticsearch 作为一个守护进程 ...

  6. ABAP自定义截取字符串长度函数

    SAP 中strlen()只能计算字符串的个数,不能计算含有中文字符串的长度,如字符串“SAP大波霸”,strlen('SAP大波霸') = 6,其实真实长度为3+3*2 = 9.我们可以通过cl_a ...

  7. SVD在推荐系统中的应用详解以及算法推导

    SVD在推荐系统中的应用详解以及算法推导     出处http://blog.csdn.net/zhongkejingwang/article/details/43083603 前面文章SVD原理及推 ...

  8. PHP.20-图片上传下载

    图片上传下载 思路: 1.创建图片上传的存放目录 /uploads/ 2.index.php //浏览页面,提供上传表单 上传表单:文件上传必须使用enctype="multipart/fo ...

  9. echart搭配时间轴进行展示 (本例展示的是多时间 多地区 多指标条件 )

    1:照常先来几张图 看效果  2:首先 看官方文档 我把echart官方的例子给扒下来并整理了得出如下效果 上 案例图和代码 效果图 : 代码: <style type="text/c ...

  10. 程序员必需知道的Windows Shell命令

    Windows系统本来就很人性化的操作系统,操作很方便,但是对于开发人员来说,有些时候改变一些电脑配置或者执行某些任务来说,使用GUI操作反而事倍功半,因此建议使用Shell命令来提高一下工作效率. ...