题目大意

给你n个凸多边形,求多边形的交的面积

分析

题意\(=\)给你一堆边,让你求半平面交的面积

做法

半平面交模板

1.定义半平面为向量的左侧

2.将所有向量的起点放到一个中心,以中心参照进行逆时针极角排序

但是直接按叉积排序会转圈圈

于是我们从\(x\)轴负半轴开始逆时针旋转,将坐标轴分为上下两部(\(x\)轴属于下部)

当两个向量终点的\(y\)都在x轴上时,按x从小到大排

当两个向量终点同在上部/同在下部时,按叉积排(平行按左右排)

当一上一下时,下部的排前

注意:快排时像我这样贪方便,在cmp里swap一下想都不想的人也是很罕见的

3.考虑下面这样一幅图



黑色为原半平面交的边界,蓝色为新加入的向量

不难发现当之前交点在蓝色右边时,向量1要被删掉

这样的话,每次新加入向量,就会删掉在向量右边的交点(线上的也要删)

最后会在所有交点的右边,画幅图出来发现这和凸包是非常像的

然后考虑下面的一幅图



发现我们维护的凸包首尾都是要删除的

所以我们要写一个双端队列

4.考虑平行的两个向量,一定是保留最左的一个

5.考虑下面这幅图



图上的边搞完之后都还是在双端队列里的

但是:最后带红色标记的那一条边是无效的,为什么呢?

因为凸包首尾是连起来的!

所以最后还要模拟插入队头,把队尾中多余的半平面去掉

6.如果题目没有保证半平面封闭,就加上一个超大的四边形限制

推广

uoj的一篇博客写的很棒,证明也很棒,还提到了一种先求上凸壳,再求下凸壳,再把两边多出来的部分删掉的方法   搓这

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef double db;
const int M=507; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int n,m,tt; struct pt{
db x,y;
pt(db xx=0,db yy=0){x=xx;y=yy;}
}p[M],a[M];
pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
pt operator *(pt x,db d){return pt(x.x*d,x.y*d);}
pt operator /(pt x,db d){return pt(x.x/d,x.y/d);}
db slop(pt x){return x.y/x.x;}
db dot(pt x,pt y){return x.x*y.x+x.y*y.y;}
db det(pt x,pt y){return x.x*y.y-x.y*y.x;}
db len(pt x){return sqrt(dot(x,x));}
db dis(pt x,pt y){return len(y-x);}
db area(pt x,pt y,pt z){return det(y-x,z-x);} struct line{
pt P,v;
line(pt PP=pt(),pt vv=pt()){P=PP;v=vv;}
}l[M],s[M]; pt inter(line x,line y){
pt u=x.P-y.P;
db t=det(u,y.v)/det(y.v,x.v);
return x.P+x.v*t;
}
bool parallel(line x,line y){return det(y.v,x.v)==0;}
bool lineleft(line x,line y){
db tp=det(x.v,y.v);
return (tp>0)||((tp==0)&&det(x.v,y.P-x.P)>0);
}
bool ptright(pt x,line y){return det(y.v,x-y.P)<=0;}///<= bool cmp(line x,line y){//极角排序
if(x.v.y==0 && y.v.y==0) return x.v.x<y.v.x;//y都为0
if(x.v.y<=0 && y.v.y<=0) return lineleft(x,y);//同在上部
if(x.v.y>0 && y.v.y>0 ) return lineleft(x,y);//同在下部
return x.v.y<y.v.y;//一上一下
} void hpi(){//half-plane intersection
sort(l+1,l+m+1,cmp);//sort
int tp=0,i;
for(i=1;i<=m;i++){
if(i==1||!parallel(l[i],l[i-1])) tp++;//平行特判
l[tp]=l[i];
}
m=tp;
int L=1,R=2;
s[1]=l[1],s[2]=l[2];
for(i=3;i<=m;i++){
while(L<R && ptright(inter(s[R],s[R-1]),l[i])) R--;
while(L<R && ptright(inter(s[L],s[L+1]),l[i])) L++;
s[++R]=l[i];
}
while(L<R && ptright(inter(s[R],s[R-1]),s[L])) R--;//最后删除无用平面
if(R-L<=1){//若半平面交退化为点或线
puts("0.000");
return;
}
tp=0;
s[L-1]=s[R];
for(i=L;i<=R;i++) a[++tp]=inter(s[i],s[i-1]);//求出相邻两边的交点,转化为凸包的记录方法
db ans=0;
for(i=3;i<=tp;i++) ans+=area(a[1],a[i-1],a[i])*0.5;
printf("%.3lf",ans);//求面积
} int main(){ int i,x,y,z,st;
tt=rd();
n=m=0;
while(tt--){
z=rd();
st=n+1;
while(z--){
x=rd(),y=rd();
p[++n]=pt(x,y);
if(n>st) l[++m]=line(p[n-1],p[n]-p[n-1]);
}
l[++m]=line(p[n],p[st]-p[n]);
} hpi(); return 0;
}

bzoj 2618 半平面交模板+学习笔记的更多相关文章

  1. POJ 3525 /// 半平面交 模板

    题目大意: 给定n,接下来n行逆时针给定小岛的n个顶点 输出岛内离海最远的点与海的距离 半平面交模板题 将整个小岛视为由许多半平面围成 那么以相同的比例缩小这些半平面 一直到缩小到一个点时 那个点就是 ...

  2. bzoj 2618【半平面交模板】

    #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> usin ...

  3. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  4. 半平面交模板(O(n*n)&& O(n*log(n))

    摘自http://blog.csdn.net/accry/article/details/6070621 首先解决问题:什么是半平面? 顾名思义,半平面就是指平面的一半,我们知道,一条直线可以将平面分 ...

  5. POJ 半平面交 模板题 三枚

    给出三个半平面交的裸题. 不会的上百度上谷(gu)歌(gou)一下. 毕竟学长的语文是体育老师教的.(卡格玩笑,别当真.) 这种东西明白就好,代码可以当模板. //poj1474 Video Surv ...

  6. 再来一道测半平面交模板题 Poj1279 Art Gallery

    地址:http://poj.org/problem?id=1279 题目: Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Su ...

  7. C++模板学习笔记

    一个有趣的东西:实现一个函数print, 输入一个数组, 输出数组的各个维度长度. eg. ], b[][], c[][][]; print(a); //(2, 4) print(b); //(3, ...

  8. 初步C++类模板学习笔记

    类模板 实现:在上课时间的定义给它的一个或多个参数,这些参数代表了不同的数据类型.                              -->抽象的类. 在调用类模板时, 指定參数, 由编 ...

  9. tornada模板学习笔记

    import tornado.web import tornado.httpserver import tornado.ioloop import tornado.options import os. ...

随机推荐

  1. MySQL工作经验

    以下是根据工作中遇到各种场景用到的一些Mysql用法,比较实用,基本是语法之外的一些东西. 修改账户密码 1.打开Mysql控制台,输入原密码: 2.输入以下语法:mysql> set pass ...

  2. PHP continue和break的用法(深入理解)

    对于刚入门的PHP童鞋们来说,在循环体中的continue和break的作用总是分不清到底是什么意思, 怎么用, 两者到底有什么区别? 接下来说几个例子,其实它们是很好区分的. <?php $t ...

  3. python爬虫:爬取猫眼TOP100榜的100部高分经典电影

    1.问题描述: 爬取猫眼TOP100榜的100部高分经典电影,并将数据存储到CSV文件中 2.思路分析: (1)目标网址:http://maoyan.com/board/4 (2)代码结构: (3) ...

  4. strak组件(9):关键字搜索

    效果图: 在列表视图函数增加搜索功能. 新增函数 def get_search_list(self) 钩子方法,获取搜索条件 一.strak组件 strak/service/core_func.py ...

  5. Pandas 数据读取

    1.读取table # 读取普通分隔数据:read_table # 可以读取txt,csv import os os.chdir('F:/') #首先设置一下读取的路径 data1 = pd.read ...

  6. Pandas 数据结构Dataframe:基本概念及创建

    "二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字 ...

  7. 找回被丢弃怎么找都找不回来的git中的commit

    崩溃的一天,打算提代码走人,结果切分支之后,commit丢了= =,找了三个多小时 接下来分享下如何找回丢失的commit的 打开项目所在位置,打开git bash,在gitBASH中输入 git f ...

  8. 用python实现【五猴分桃】问题

    转载链接:https://blog.csdn.net/cy309173854/article/details/78296839 据说“五猴分桃”问题最先是由大物理学家狄拉克提出来的,这一貌似简单的问题 ...

  9. [Bzoj2246]迷宫探险(概率+DP)

    Description 题目链接 Solution 用三进制表示陷阱状态,1表示有害,2表示无害,0表示不知道 用\(f[S][i]\)表示状态为S时陷阱i有害的概率,这个可以预处理出 \(d[S][ ...

  10. CERC2017 F: Faulty Factorial 简单数论题

    #include <iostream> using namespace std; #define ll long long ; ll n,p,r; ll poww(ll a,ll b){ ...