Drazil created a following problem about putting 1 × 2 tiles into an n × m grid:

"There is a grid with some cells that are empty and some cells that are occupied. You should use 1 × 2 tiles to cover all empty cells and no two tiles should cover each other. And you should print a solution about how to do it."

But Drazil doesn't like to write special checking program for this task. His friend, Varda advised him: "how about asking contestant only to print the solution when it exists and it is unique? Otherwise contestant may print 'Not unique' ".

Drazil found that the constraints for this task may be much larger than for the original task!

Can you solve this new problem?

Note that you should print 'Not unique' either when there exists no solution or when there exists several different solutions for the original task.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 2000).

The following n lines describe the grid rows. Character '.' denotes an empty cell, and the character '*' denotes a cell that is occupied.

Output

If there is no solution or the solution is not unique, you should print the string "Not unique".

Otherwise you should print how to cover all empty cells with 1 × 2 tiles. Use characters "<>" to denote horizontal tiles and characters "^v" to denote vertical tiles. Refer to the sample test for the output format example.

Examples

Input
3 3
...
.*.
...
Output
Not unique
Input
4 4
..**
*...
*.**
....
Output
<>**
*^<>
*v**
<><>
Input
2 4
*..*
....
Output
*<>*
<><>
Input
1 1
.
Output
Not unique
Input
1 1
*
Output
*

Note

In the first case, there are indeed two solutions:

<>^
^*v
v<>

and

^<>
v*^
<>v

so the answer is "Not unique".

题意:输入一个n*m包括'*'和'.'的矩阵,'.'表示该位置为空。'*'表示该位置已有东西。用一个1*2的瓷砖去填满空位置,如果只有一种方法,输出该方法。如果无解或有2种以上的方法输出Not unique.

题解:类似于拓扑排序的想法,将四周只有一个 ' . ' 的点放进队列,之后跑完队列里面所有的点就可以了,在跑的时候,确定另一块砖的时候要将其四周的点的b数组更新,之后队列为空后验证是否可以将所有的地都铺满

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<map>
#include<cstdlib>
#include<vector>
#include<string>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
const double PI = acos(-1.0);
const int maxn = 2e3+;
const int mod = 1e9+; int dx[] = {,,,-};
int dy[] = {,-,,};
int n,m;
char a[maxn][maxn];
int b[maxn][maxn];
struct Node {
int x,y;
};
queue<Node>que;
int Count(int x,int y) //计算每一个点的四周的.的数量
{
int ans = ;
for(int i=;i<;i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if(xx>= && xx<n && yy>= && yy<m && a[xx][yy]=='.')
ans++;
}
return ans;
}
void update(int x,int y) //重新数四周只有一个.的点放进队列
{
for(int i=;i<;i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if(xx>= && xx<n && yy>= && yy<m && a[xx][yy]=='.')
{
b[xx][yy]=Count(xx,yy);
if(b[xx][yy] == )
que.push(Node{xx,yy});
}
}
}
bool check() //判断是否可以将全部的.都填满
{
for(int i=;i<n;i++)
for(int j=;j<m;j++)
if(a[i][j] == '.')
return false;
return true;
}
int main()
{ scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
scanf("%s",a[i]);
Node node;
memset(b,,sizeof b);
while(!que.empty())
que.pop();
for(int i=;i<n;i++) //将四周只有一个.的放进队列
{
for(int j=;j<m;j++)
{
if(a[i][j] == '*')
continue;
b[i][j] = Count(i,j);
if(b[i][j] == )
{
node.x = i;
node.y = j;
que.push(node);
}
}
}
while(!que.empty()) //类拓扑
{
node = que.front();
que.pop();
int x = node.x;
int y = node.y;
for (int i = ; i < ; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
if (nx >= && nx < n && ny >= && ny < m && a[nx][ny] == '.') {
if (i == ) {
a[x][y] = '<';
a[nx][ny] = '>';
} else if (i == ) {
a[x][y] = '>';
a[nx][ny] = '<';
} else if (i == ) {
a[x][y] = '^';
a[nx][ny] = 'v';
} else if (i == ) {
a[x][y] = 'v';
a[nx][ny] = '^';
}
update(x, y);
update(nx, ny);
break;
}
}
}
if(check())
{
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
printf("%c",a[i][j]);
}
printf("\n");
}
}
else
puts("Not unique"); }

Drazil and Tiles CodeForces - 516B (类拓扑)的更多相关文章

  1. CodeForces - 516B Drazil and Tiles(bfs)

    https://vjudge.net/problem/CodeForces-516B 题意 在一个n*m图中放1*2或者2*1的长方形,问是否存在唯一的方法填满图中的‘.’ 分析 如果要有唯一的方案, ...

  2. Codeforces Round #292 (Div. 1) B. Drazil and Tiles 拓扑排序

    B. Drazil and Tiles 题目连接: http://codeforces.com/contest/516/problem/B Description Drazil created a f ...

  3. Codeforces Round #292 (Div. 2) D. Drazil and Tiles [拓扑排序 dfs]

    传送门 D. Drazil and Tiles time limit per test 2 seconds memory limit per test 256 megabytes Drazil cre ...

  4. CodeForces 516B Drazil and Tiles 其他

    原文链接http://www.cnblogs.com/zhouzhendong/p/8990658.html 题目传送门 - CodeForces 516B 题意 给出一个$n\times m$的矩形 ...

  5. Codeforces Round #292 (Div. 1) - B. Drazil and Tiles

    B. Drazil and Tiles   Drazil created a following problem about putting 1 × 2 tiles into an n × m gri ...

  6. Codeforces Round #292 (Div. 1) B. Drazil and Tiles (类似拓扑)

    题目链接:http://codeforces.com/problemset/problem/516/B 一个n*m的方格,'*'不能填.给你很多个1*2的尖括号,问你是否能用唯一填法填满方格. 类似t ...

  7. 【codeforces 516B】Drazil and Tiles

    题目链接: http://codeforces.com/problemset/problem/516/B 题解: 首先可以得到一个以‘.’为点的无向图,当存在一个点没有边时,无解.然后如果这个图边双联 ...

  8. 【codeforces 515D】Drazil and Tiles

    [题目链接]:http://codeforces.com/contest/515/problem/D [题意] 给你一个n*m的格子; 然后让你用1*2的长方形去填格子的空缺; 如果有填满的方案且方案 ...

  9. [ CodeForces 515 D ] Drazil and Tiles

    \(\\\) \(Description\) 给出一个\(N\times M\) 的网格,一些位置是障碍,其他位置是空地,求是否存在一个用 \(1\times 2\)的骨牌铺满空地的方案,以及方案是否 ...

随机推荐

  1. [学习心得][Introduction to ASP.NET Core 1.0]4-1 Creating a Form

    原视频地址https://mva.microsoft.com/en-US/training-courses/introduction-to-asp-net-core-1-0-16841?l=eYlqd ...

  2. foxmail6.5 不能收取电子邮件,反复提示输入密码?

    使用foxmail时候报错:-err system resource error,system close connect,code=<1014>,id=<1>重新输入密码吗? ...

  3. Android setUserVisibleHint-- fragment真正的onResume和onPause方法

    这个情况仅适合与多个fragment之间切换时统计,而非activity和fragment同时交互,因当时项目为首页4个fargment时长统计,因此适合,经下面网友评论指出,特在这里写出此问题,因最 ...

  4. jquery对checkbox的操作汇总

    1.全选 $("#btn1").click(function(){ $("input[name='checkbox']").attr("checked ...

  5. jQuery实现网页右下角悬浮层提示

    最近有同事提到类似网页右下角的消息悬浮提示框的制作.我之前也做过一个类似的例子,很简单.是仿QQ消息.现在感觉之前的那个例子只是说了实现原理,整体上给你的感觉还是太丑,今天为大家带来一个新的例子.是D ...

  6. POJ-3187 Backward Digit Sums---枚举全排列

    题目链接: https://vjudge.net/problem/POJ-3187 题目大意: 输入n,sum,求1~n的数,如何排列之后,相邻两列相加,直到得出最后的结果等于sum,输出1~n的排列 ...

  7. 温故而知新:Asp.Net中如何正确使用Session

    原文链接作者:菩提树下的杨过出处:http://yjmyzz.cnblogs.com Asp.Net中的Session要比Asp中的Session灵活和强大很多,同时也复杂很多:看到有一些Asp.Ne ...

  8. eclipse的一些快捷键

    ctrl + 1快速修复 ctrl + d 快速删除 ctrl + F11快速运行 ctrl + m 放大工作区 atl + /注释 ...

  9. 【转】基于JavaMail的Java邮件发送

    http://blog.csdn.net/xietansheng/article/details/51673073 http://blog.csdn.net/xietansheng/article/d ...

  10. Ubuntu下几种常用的文本编辑器

    常见的基于控制台的文本编辑器有以下几种: emacs           综合性的GNU emacs 编辑环境 nano              一个类似于经典的pico的文本编辑器,内置了一个pi ...