Drazil created a following problem about putting 1 × 2 tiles into an n × m grid:

"There is a grid with some cells that are empty and some cells that are occupied. You should use 1 × 2 tiles to cover all empty cells and no two tiles should cover each other. And you should print a solution about how to do it."

But Drazil doesn't like to write special checking program for this task. His friend, Varda advised him: "how about asking contestant only to print the solution when it exists and it is unique? Otherwise contestant may print 'Not unique' ".

Drazil found that the constraints for this task may be much larger than for the original task!

Can you solve this new problem?

Note that you should print 'Not unique' either when there exists no solution or when there exists several different solutions for the original task.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 2000).

The following n lines describe the grid rows. Character '.' denotes an empty cell, and the character '*' denotes a cell that is occupied.

Output

If there is no solution or the solution is not unique, you should print the string "Not unique".

Otherwise you should print how to cover all empty cells with 1 × 2 tiles. Use characters "<>" to denote horizontal tiles and characters "^v" to denote vertical tiles. Refer to the sample test for the output format example.

Examples

Input
3 3
...
.*.
...
Output
Not unique
Input
4 4
..**
*...
*.**
....
Output
<>**
*^<>
*v**
<><>
Input
2 4
*..*
....
Output
*<>*
<><>
Input
1 1
.
Output
Not unique
Input
1 1
*
Output
*

Note

In the first case, there are indeed two solutions:

<>^
^*v
v<>

and

^<>
v*^
<>v

so the answer is "Not unique".

题意:输入一个n*m包括'*'和'.'的矩阵,'.'表示该位置为空。'*'表示该位置已有东西。用一个1*2的瓷砖去填满空位置,如果只有一种方法,输出该方法。如果无解或有2种以上的方法输出Not unique.

题解:类似于拓扑排序的想法,将四周只有一个 ' . ' 的点放进队列,之后跑完队列里面所有的点就可以了,在跑的时候,确定另一块砖的时候要将其四周的点的b数组更新,之后队列为空后验证是否可以将所有的地都铺满

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<map>
#include<cstdlib>
#include<vector>
#include<string>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
const double PI = acos(-1.0);
const int maxn = 2e3+;
const int mod = 1e9+; int dx[] = {,,,-};
int dy[] = {,-,,};
int n,m;
char a[maxn][maxn];
int b[maxn][maxn];
struct Node {
int x,y;
};
queue<Node>que;
int Count(int x,int y) //计算每一个点的四周的.的数量
{
int ans = ;
for(int i=;i<;i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if(xx>= && xx<n && yy>= && yy<m && a[xx][yy]=='.')
ans++;
}
return ans;
}
void update(int x,int y) //重新数四周只有一个.的点放进队列
{
for(int i=;i<;i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if(xx>= && xx<n && yy>= && yy<m && a[xx][yy]=='.')
{
b[xx][yy]=Count(xx,yy);
if(b[xx][yy] == )
que.push(Node{xx,yy});
}
}
}
bool check() //判断是否可以将全部的.都填满
{
for(int i=;i<n;i++)
for(int j=;j<m;j++)
if(a[i][j] == '.')
return false;
return true;
}
int main()
{ scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
scanf("%s",a[i]);
Node node;
memset(b,,sizeof b);
while(!que.empty())
que.pop();
for(int i=;i<n;i++) //将四周只有一个.的放进队列
{
for(int j=;j<m;j++)
{
if(a[i][j] == '*')
continue;
b[i][j] = Count(i,j);
if(b[i][j] == )
{
node.x = i;
node.y = j;
que.push(node);
}
}
}
while(!que.empty()) //类拓扑
{
node = que.front();
que.pop();
int x = node.x;
int y = node.y;
for (int i = ; i < ; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
if (nx >= && nx < n && ny >= && ny < m && a[nx][ny] == '.') {
if (i == ) {
a[x][y] = '<';
a[nx][ny] = '>';
} else if (i == ) {
a[x][y] = '>';
a[nx][ny] = '<';
} else if (i == ) {
a[x][y] = '^';
a[nx][ny] = 'v';
} else if (i == ) {
a[x][y] = 'v';
a[nx][ny] = '^';
}
update(x, y);
update(nx, ny);
break;
}
}
}
if(check())
{
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
printf("%c",a[i][j]);
}
printf("\n");
}
}
else
puts("Not unique"); }

Drazil and Tiles CodeForces - 516B (类拓扑)的更多相关文章

  1. CodeForces - 516B Drazil and Tiles(bfs)

    https://vjudge.net/problem/CodeForces-516B 题意 在一个n*m图中放1*2或者2*1的长方形,问是否存在唯一的方法填满图中的‘.’ 分析 如果要有唯一的方案, ...

  2. Codeforces Round #292 (Div. 1) B. Drazil and Tiles 拓扑排序

    B. Drazil and Tiles 题目连接: http://codeforces.com/contest/516/problem/B Description Drazil created a f ...

  3. Codeforces Round #292 (Div. 2) D. Drazil and Tiles [拓扑排序 dfs]

    传送门 D. Drazil and Tiles time limit per test 2 seconds memory limit per test 256 megabytes Drazil cre ...

  4. CodeForces 516B Drazil and Tiles 其他

    原文链接http://www.cnblogs.com/zhouzhendong/p/8990658.html 题目传送门 - CodeForces 516B 题意 给出一个$n\times m$的矩形 ...

  5. Codeforces Round #292 (Div. 1) - B. Drazil and Tiles

    B. Drazil and Tiles   Drazil created a following problem about putting 1 × 2 tiles into an n × m gri ...

  6. Codeforces Round #292 (Div. 1) B. Drazil and Tiles (类似拓扑)

    题目链接:http://codeforces.com/problemset/problem/516/B 一个n*m的方格,'*'不能填.给你很多个1*2的尖括号,问你是否能用唯一填法填满方格. 类似t ...

  7. 【codeforces 516B】Drazil and Tiles

    题目链接: http://codeforces.com/problemset/problem/516/B 题解: 首先可以得到一个以‘.’为点的无向图,当存在一个点没有边时,无解.然后如果这个图边双联 ...

  8. 【codeforces 515D】Drazil and Tiles

    [题目链接]:http://codeforces.com/contest/515/problem/D [题意] 给你一个n*m的格子; 然后让你用1*2的长方形去填格子的空缺; 如果有填满的方案且方案 ...

  9. [ CodeForces 515 D ] Drazil and Tiles

    \(\\\) \(Description\) 给出一个\(N\times M\) 的网格,一些位置是障碍,其他位置是空地,求是否存在一个用 \(1\times 2\)的骨牌铺满空地的方案,以及方案是否 ...

随机推荐

  1. 【起航计划 025】2015 起航计划 Android APIDemo的魔鬼步伐 24 App->Notification->Notifying Service Controller service中使用Notification

    这个例子介绍了如何在Service中使用Notification,相关的类为NotifyingController和NotifyingService. 在Service中使用Notification的 ...

  2. Selenium 元素查找

    1.尽量使用ID或者name去定位元素,如果这个元素没有ID或者Name,那么就是用它最近的父节点的ID或者Name去定位. 2.写自动化脚本不是一个人的事情,是一个团队的事情,合作能更好,更轻松得完 ...

  3. Spring+SpringMVC+Mybatis+Shiro环境搭建之IDEA下搭建Maven项目

    运行IntelliJ IDEA 2016.3.2(64)编译器新建项目   在弹出的窗体中选择maven,然后勾选要建的maven模板--这里选webApp 然后填入相应的maven项目组信息(Gro ...

  4. Swagger2:常用注解说明

    Swagger2常用注解说明 Spring Boot : Swagger 2使用教程:https://www.cnblogs.com/JealousGirl/p/swagger.html 这里只讲述@ ...

  5. sql注入【手工及一些工具】

    Sql注入原理分析: 网站程序存在可控传递参数,参数未进行过滤直接带入数据库查询,导致攻击者可通过传递恶意sql语句代码进行执行攻击. Sql注入产生条件 1.必须有参数传递 2.参数值带入数据库查询 ...

  6. 如何处理Eclipse错误消息 The declared package does not match the expected package

    我从github下载了一个开源项目后,导入到自己Eclipse之后,遇到了这个烦人的错误消息: The declared package "com.sap.smartService" ...

  7. MySQL一致性非锁定读

    一致性非锁定读(consistent nonlocking read)是指InnoDB存储引擎通过多版本控制(multi versionning)的方式来读取当前执行时间数据库中行的数据,如果读取的行 ...

  8. Android(java)学习笔记72:ProgressBar的使用

    1. ProgressBar使用 首先我们看例程如下: (1) main.xml文件如下: <?xml version="1.0" encoding="utf-8& ...

  9. ORA-00392: log 4 of thread 2 is being cleared, operation not allowed

     alter database open resetlogs或者 alter database open resetlogs upgrade报错:ORA-00392 在rman restore 还原数 ...

  10. object dection资源

    https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html