【题目链接】 http://poj.org/problem?id=3735

【题目大意】

  有一排小猫,给出一系列操作,包括给一只猫一颗花生,
  让某只猫吃完所有的花生以及交换两只猫的花生,
  求完成m次操作集合之后每只猫的花生数量

【题解】

  创建一个1*(n+1)的初始矩阵,
  对于给第i只猫一个花生就相当于乘上修改了A[0][i]的单位矩阵
  如给第一只猫一个花生就修改A[0][1]为1
  得到:
    1 1 0 0
    0 1 0 0
    0 0 1 0
    0 0 0 1
  然后我们用初始矩阵去乘这个矩阵,就完成了加的操作
  对于让第i只猫吃完所有的花生,我们将A[i][i]修改为0
  如让第三只猫吃完花生,那么就相当于将A[3][3]改为0
  得到
    1 0 0 0
    0 1 0 0
    0 0 1 0
    0 0 0 0
  然后我们用初始矩阵去乘这个矩阵,就完成了清零的操作
  对于交换花生的操作,我们交换单位矩阵的第x和y行,然后相乘即可
  比如交换第一只猫和第三只猫的花生,我们就得到
    1 0 0 0
    0 0 0 1
    0 0 1 0
    0 1 0 0
  乘到初始矩阵上即可
  我们发现经过这些操作,我们最后会得到一个操作集合的矩阵表达
  而这些操作的变换其实不用整个乘上矩阵,只要直接修改单位矩阵的部分值即可
  第一种操作的影响可以转化为A[0][x]++
  第二种操作的影响可以转化为A[0~n][x]=0
  第三种操作的影响可以转化为i_0^n swap(A[i][x],A[i][y])
  那么我们直接计算转置矩阵即可。

【代码】

#include <cstdio>
#include <vector>
#define rep(i,n) for(int i=0;i<n;i++)
using namespace std;
typedef long long LL;
typedef vector<vector<LL> > mat;
LL n,m,k,x,y;
char op[10];
mat mul(mat &A,mat &B){
mat C(A.size(),vector<LL>(B[0].size()));
rep(i,A.size())rep(k,B.size())if(A[i][k]){
rep(j,B[0].size())C[i][j]+=A[i][k]*B[k][j];
}return C;
}
mat pow(mat A,LL n){
mat B(A.size(),vector<LL>(A.size()));
rep(i,A.size())B[i][i]=1;
for(;n;n>>=1){if(n&1)B=mul(B,A);A=mul(A,A);}
return B;
}
int main(){
while(scanf("%lld%lld%lld",&n,&m,&k),n+m+k){
mat A(n+1,vector<LL>(n+1));
rep(i,n+1)A[i][i]=1;
while(k--){
scanf("%s",&op);
if(op[0]=='g'){
scanf("%lld",&x);
A[0][x]++;
}else if(op[0]=='e'){
scanf("%lld",&x);
rep(i,n+1)A[i][x]=0;
}else{
scanf("%lld%lld",&x,&y);
rep(i,n+1)swap(A[i][x],A[i][y]);
}
}if(m){
A=pow(A,m);
printf("%lld",A[0][1]);
for(int i=2;i<=n;i++)printf(" %lld",A[0][i]);
puts("");
}else{
printf("0");
rep(i,n-1)printf(" 0");
puts("");
}
}return 0;
}

POJ 3735 Training little cats(矩阵乘法)的更多相关文章

  1. poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化

    题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...

  2. POJ 3735 Training little cats 矩阵快速幂

    http://poj.org/problem?id=3735 给定一串操作,要这个操作连续执行m次后,最后剩下的值. 记矩阵T为一次操作后的值,那么T^m就是执行m次的值了.(其实这个还不太理解,但是 ...

  3. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  4. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  5. [POJ 3735] Training little cats (结构矩阵、矩阵高速功率)

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 9613   Accepted: 2 ...

  6. POJ 3735 Training little cats(矩阵快速幂)

    Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11787 Accepted: 2892 ...

  7. poj 3735 Training little cats(矩阵快速幂,模版更权威,这题数据很坑)

    题目 矩阵快速幂,这里的模版就是计算A^n的,A为矩阵. 之前的矩阵快速幂貌似还是个更通用一些. 下面的题目解释来自 我只想做一个努力的人 @@@请注意 ,单位矩阵最初构造 行和列都要是(猫咪数+1) ...

  8. POJ 3735 Training little cats

    题意 维护一个向量, 有三种操作 将第\(i\)个数加1 将第\(i\)个数置0 交换第\(i\)个数和第\(j\)个数 Solution 矩阵乘法/快速幂 Implementation 我们将向量写 ...

  9. poj 3735 Training little cats(构造矩阵)

    http://poj.org/problem?id=3735 大致题意: 有n仅仅猫,開始时每仅仅猫有花生0颗,现有一组操作,由以下三个中的k个操作组成: 1. g i 给i仅仅猫一颗花生米 2. e ...

随机推荐

  1. 板载raid 安装Ubuntu 黑屏

    最近有碰到过产线反馈supermicro x10主板板载raid安装ubuntu桌面版 ,出现安装完成后黑屏,现象是能正常识别faker raid 但是第一次重启,就会出现黑屏,只有左上角广光标在闪, ...

  2. Python全栈工程师 (exercises)

    # 1:给定一个数,判断他是正数,负数,还是0 a = int(input("请输入一该个整数")) if a == 0: print(a, "是0") eli ...

  3. Kickstart配置文件解析

    参考:https://www.douban.com/note/270359374/?type=likehttp://blog.51cto.com/molinux/548247http://debugo ...

  4. HDU 4455 Substrings ( DP好题 )

    这个……真心看不出来是个DP,我在树状数组的康庄大道上欢快的奔跑了一下午……看了题解才发现错的有多离谱. 参考:http://www.cnblogs.com/kuangbin/archive/2012 ...

  5. [转载]GCC 编译使用动态链接库和静态链接库--及先后顺序----及环境变量设置总结

    来自http://blog.csdn.net/benpaobagzb/article/details/51364005 GCC 编译使用动态链接库和静态链接库 1 库的分类 根据链接时期的不同,库又有 ...

  6. sqlalchemy presto 时间比较

    大数据统计时,需要计算开仓订单减掉经纪商时间差,等于n 小时 或 星期几的订单. presto sql语句如下: select sum(profit) from t_table where open_ ...

  7. javascript replace 替换全部字符

    $("#pageNote").html($("#note3").val().replace(/ /g, "").replace(/<b ...

  8. P3456 [POI2007]GRZ-Ridges and Valleys

    题意翻译 给定一个地图,为小朋友想要旅行的区域,地图被分为n*n的网格,每个格子(i,j) 的高度w(i,j)是给定的.若两个格子有公共顶点,那么他们就是相邻的格子.(所以与(i,j)相邻的格子有(i ...

  9. [洛谷P4656][CEOI2017]Palindromic Partitions

    题目大意:一个长度为$n$的字符串,要求把它分成尽可能多的小块,使得这些块构成回文串 题解:贪心,从两边从找尽可能小的块使得左右的块相等,判断相等可以用$hash$ 卡点:无 C++ Code: #i ...

  10. HDU 2546 饭卡(01 背包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2546 思路:需要首先处理一下的的01背包,当饭卡余额大于等于5时,是什么都能买的,所以题目要饭卡余额最小, ...