【OpenJudge3531】【背包DP】【膜法交配律】判断整除
判断整除
总时间限制: 1000ms 内存限制: 65536kB
【描述】
一个给定的正整数序列,在每个数之前都插入+号或-号后计算它们的和。比如序列:1、2、4共有8种可能的序列:
(+1) + (+2) + (+4) = 7
(+1) + (+2) + (-4) = -1
(+1) + (-2) + (+4) = 3
(+1) + (-2) + (-4) = -5
(-1) + (+2) + (+4) = 5
(-1) + (+2) + (-4) = -3
(-1) + (-2) + (+4) = 1
(-1) + (-2) + (-4) = -7
所有结果中至少有一个可被整数k整除,我们则称此正整数序列可被k整除。例如上述序列可以被3、5、7整除,而不能被2、4、6、8……整除。注意:0、-3、-6、-9……都可以认为是3的倍数。
输入输入的第一行包含两个数:N(2 < N < 10000)和k(2 < k< 100),其中N代表一共有N个数,k代表被除数。第二行给出序列中的N个整数,这些整数的取值范围都0到10000之间(可能重复)。输出如果此正整数序列可被k整除,则输出YES,否则输出NO。(注意:都是大写字母)
【样例输入】
3 2
1 2 4
【样例输出】
NO
【Solution】
首先,膜法交配律,其实就是模法分配律,即(a+b+c)%k=(a%k+b%k+c%k)%k。所以预处理输入数据全部模k。
dp[i][j]表示到第i个数模k是否有可能等于j。转移方程为dp[i+1][(j+data[i]-100)%k+100]=dp[i][j] (dp[i][j]==1) , dp[i+1][(j-data[i]-100)%k+100]=dp[i][j] (dp[i][j]==1)。
AC代码:
#include <cstdio>
int N,K;
int data[];
int dp[][];
int main(){
scanf("%d%d",&N,&K); for(int i=;i<=N;++i) scanf("%d",&data[i]);
data[]%=K; dp[][+data[]]=dp[][-data[]]=;
for(int i=;i<=N;++i){
data[i]%=K;
for(int j=;j<=K+;++j)
if(dp[i][j]){
dp[i+][(j+data[i]-)%K+]=;
dp[i+][(j-data[i]-)%K+]|=dp[i][j];
}
}
if(dp[N+][]) printf("YES");
else printf("NO");
return ;
}
【OpenJudge3531】【背包DP】【膜法交配律】判断整除的更多相关文章
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- 【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述 有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色. 还有\(m\)种洗牌方法,每种洗牌方法是一种置换.保证任意多次洗牌都可用这\( ...
- UOJ #17. 【NOIP2014】飞扬的小鸟 背包DP
#17. [NOIP2014]飞扬的小鸟 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4902 Solved: 1879 题目连接 http:// ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- [luogu3767]膜法
[luogu3767]膜法 luogu 神仙题 线段树分治+带权并查集 把每个操作看成点 首先这个操作的结构是一棵树 你发现每个点的对它的子树产生影响 我们可以想到用dfn序把它转成一段区间用线段树分 ...
- 【bzoj5018】[Snoi2017]英雄联盟 背包dp
题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤!小皮球只会玩N个英雄,因此,他也只准 ...
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- 算法复习——背包dp
1.01背包 二维递推式子: 代码: ;i<=n;i++) ;x--) ][x-w[i]]+c[i],f[i-][x]); ][x]; printf("%d",f[n][m] ...
随机推荐
- 【志银】Dev-Cpp配置OpenGL图形库(成功版本:Dev-Cpp 5.7.1 MinGW 4.8.1)
★配置前须知:Dev-Cpp自带OpenGL的使用和OpenGL简介 (附Dev-Cpp下载地址:http://sourceforge.net/projects/orwelldevcpp/?sourc ...
- 第一次玩博客 感觉自己特别low
第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动第一天来 来好激动 ...
- HDU 4725 The Shortest Path in Nya Graph( 建图 + 最短路 )
主要是建图,建好图之后跑一边dijkstra即可. 一共3N个点,1~N是原图中的点1~N,然后把每层x拆成两个点(N+x)[用于连指向x层的边]和(N+N+x)[用于连从x层指出的边]. 相邻层节点 ...
- table不让td中文字溢出操作方法
table不让td中文字溢出操作方法 table{ width:100px; table-layout:fixed;/* 只有定义了表格的布局算法为fixed,下面td的定义才能起作用. */ } t ...
- 股神小D [点分治 or LCT]
题面 思路 点分治非常$naive$,不讲了,基本思路就是记录路径最小最大值.....然后没了 重点讲一下LCT的做法(好写不卡常)(点分一堆人被卡到飞起hhhh) 首先,这个路径限制由边限制决定,而 ...
- BZOJ 1043 【bzoj1043】[HAOI2008]下落的圆盘 | 暴力么??
题目: 题解: 大概是黄学长的博客 #include<cstdio> #include<algorithm> #include<cstring> #include& ...
- (转)myeclipse工程 junit不能运行 ClassNotFoundException
博文转自:http://www.cnblogs.com/java-zone/articles/2730722.html myeclipse工程 junit不能运行 1 2 3 4 5 6 7 8 ...
- AirPlay、DLNA、Miracast三大无线技术介绍
小米盒子之AirPlay.DLNA.Miracast三大无线技术介绍 米官方称小米盒子的米联功能可以将小米手机或iPhone.iPad上的图片.音乐.视频等精彩内容投射到电视上,让你感受大屏的刺激.而 ...
- Robocopy用法
----------------[参数]-------------------robocopy /?------------------------------------------------- ...
- KMP字符串匹配算法翔解❤
看了Angel_Kitty学姐的博客,我豁然开朗,写下此文: 那么首先我们知道,kmp算法是一种字符串匹配算法,那么我们来看一个例子. 比方说,现在我有两段像这样子的字符串: 分别是T和P,很明显,P ...