C++米勒拉宾算法模板
//我也忘了从哪找来的板子,不过对于2^63级的数据请考虑使用java内置的米勒拉宾算法。
1 #include <iostream>
#include <string>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#define range(i,a,b) for(int i=a;i<=b;++i)
#define rerange(i,a,b) for(int i=a;i>=b;--i)
#define LL long long
#define fill(arr,tmp) memset(arr,tmp,sizeof(arr))
using namespace std;
const int S=;
LL mult_mod(LL a,LL b,LL c){
a%=c;
b%=c;
long long ret=;
while(b){
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
}
LL pow_mod(LL x,LL n,LL mod){
if(n==)return x%mod;
x%=mod;
LL tmp=x;
LL ret=;
while(n){
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
}
bool check(LL a,LL n,LL x,LL t){
LL ret=pow_mod(a,x,n);
LL last=ret;
range(i,,t){
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;
last=ret;
}
if(ret!=) return true;
return false;
}
bool Miller_Rabin(LL n){
if(n<)return false;
if(n==)return true;
if((n&)==) return false;
LL x=n-;
LL t=;
while((x&)==){x>>=;t++;}
range(i,,S-){
LL a=rand()%(n-)+;
if(check(a,n,x,t))return false;
}
return true;
}
LL factor[];
int tol;
LL gcd(LL a,LL b){
if(a==)return ;
if(a<) return gcd(-a,b);
while(b){
long long t=a%b;
a=b;
b=t;
}
return a;
}
LL Pollard_rho(LL x,LL c){
LL i=,k=;
LL x0=rand()%x;
LL y=x0;
while(){
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
LL d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
void findfac(LL n){
if(Miller_Rabin(n)){
factor[tol++]=n;
return;
}
LL p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
}
int main(){
long long n;
while(scanf("%lld",&n)!=EOF){
tol=;
/*
findfac(n);
for(int i=0;i<tol;++i)cout<<factor[i]<<" ";
printf("\n");
*/
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
return ;
}
C++米勒拉宾算法模板的更多相关文章
- HDU 2138 How many prime numbers (判素数,米勒拉宾算法)
题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...
- HDU2138 & 米勒拉宾模板
题意: 给出n个数,判断它是不是素数. SOL: 米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板.... 好在不是很长... Code: /*==================== ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- Miller_Rabin(米勒拉宾)素数测试
2018-03-12 17:22:48 米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数.卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义 ...
- csu 1552(米勒拉宾素数测试+二分图匹配)
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 723 Solved: 198[Submit][Status][Web Bo ...
- Miller_Rabin(米勒拉宾)素数测试算法
首先需要知道两个定理: 1: 费马小定理: 假如p是素数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p). 2:二次探测定理:如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x ...
- POJ 1811Prime Test(米勒拉宾素数测试)
直接套用模板,以后接着用 这里还有一个素因子分解的模板 #include <map> #include <set> #include <stack> #includ ...
- GCDLCM 【米勒_拉宾素数检验 (判断大素数)】
GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...
随机推荐
- github+git提交 基础用法
git版本管理基本用法: 安装就不用说了 随便一搜 安装完 妥妥的.下边说的是在github从新建一个项目开始: 1.首先打开自己的github地址,如下图所示 点加号 选 New repositor ...
- 《移动App性能评测与优化》读书笔记
第一章:内存 内存的主要组成索引: Native Heap:Native代码分配的内存,虚拟机和Android框架本身也会分配 Dalvik Heap:Java代码分配的对象 Dalvik Oth ...
- Linux系统源码安装cloud-init
参考:https://cloud.tencent.com/document/product/213/12587使用以下命令下载 cloud-init 源码包 官网下载地址:https://launch ...
- 转: jsp之c标签
http://www.gbsou.com/2009/10/12/1028.htmljsp标签之c标签 核心标签库 它是JSTL中的核心库,为日常任务提供通用支持,如显示和设置变量.重复使用一组项目.测 ...
- ExtJS Ext.MessageBox.alert()弹出对话框详解
Ext.MessageBox是一个工具类,他继承自Obiect对象,用来生成各种风格的信息提示对话框,Ext.Msg是该类的别名,使用Ext.MessageBox和用Ext.Msg效果是一样的,而后者 ...
- HDU 4758 Walk Through Squares( AC自动机 + 状态压缩DP )
题意:给你两个串A,B, 问一个串长为M+N且包含A和B且恰好包含M个R的字符串有多少种组合方式,所有字符串中均只含有字符L和R. dp[i][j][k][S]表示串长为i,有j个R,在自动机中的状态 ...
- js中prop和attr区别
首先 attr 是从页面搜索获得元素值,所以页面必须明确定义元素才能获取值,相对来说比较慢. 如: <input name='test' type='checkbox'> $('input ...
- Codeforces Round #306 (Div. 2) 550A Two Substrings
链接:http://codeforces.com/contest/550/problem/A 这是我第一次玩cf这种比赛,前面做了几场练习,觉得div2的前面几个还是比较水的. 所以看到这道题我果断觉 ...
- HDU 5366 dp 递推
The mook jong Accepts: 506 Submissions: 1281 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65 ...
- bzoj 4621 Tc605 思想+dp
4621: Tc605 Time Limit: 15 Sec Memory Limit: 128 MBSubmit: 328 Solved: 183[Submit][Status][Discuss ...