题目大意

  给你一个 \(n\times n\)的矩阵 \(A\),求次数最小且最高次项为 \(1\) 的多项式 \(F(x)\),满足 \(F(A)=0\)。

  所有操作都对 \(p\) 取模。

  \(n\leq 70,n<p\leq 998244353\)

题解

  显然特征多项式满足条件,但不一定是最优的。

  设答案为 \(F(x)=\sum_{i\geq 0}f_ix^i\)。

  那么

\[\begin{cases}
f_0{(A^0)}_{1,1}+f_1{(A^1)}_{1,1}+\cdots+f_n{(A^n)}_{1,1}&=0\\
f_0{(A^0)}_{1,2}+f_1{(A^1)}_{1,2}+\cdots+f_n{(A^n)}_{1,2}&=0\\
\vdots\\
f_0{(A^0)}_{n,n}+f_1{(A^1)}_{n,n}+\cdots+f_n{(A^n)}_{n,n}&=0
\end{cases}
\]

  这就是一个方程组,可以通过高斯消元来求解。

  观察高斯消元的过程。

  如果在消第 \(i\) 列的时候找不到主元,就说明这个矩阵的前 \(i\) 列不满秩,那么就可以钦定 \(f_{i-1}=1\),从而得到一组解。

  否则前 \(i\) 列是满秩的,唯一可能的解为 \(f_0=f_1=\ldots=f_{i-1}=0\)

  时间复杂度:\(O(n^4)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=80;
int n;
ll p;
ll fp(ll a,ll b)
{
ll s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
struct mat
{
ll a[N][N];
mat()
{
memset(a,0,sizeof a);
}
ll *operator [](int x)
{
return a[x];
}
};
mat operator *(mat a,mat b)
{
mat c;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
__int128 s=0;
for(int k=1;k<=n;k++)
s+=(ll)a[i][k]*b[k][j];
c[i][j]=s%p;
}
return c;
}
mat a[N];
ll ans[N];
ll c[N*N][N];
int m;
void gao(int x)
{
ans[x]=1;
for(int i=1;i<x;i++)
ans[i]=(-c[i][x]*fp(c[i][i],p-2)%p+p)%p;
printf("%d\n",x-1);
for(int i=1;i<=x;i++)
printf("%lld ",ans[i]);
}
void gao()
{
for(int i=1;i<=n+1;i++)
{
int flag=0;
for(int j=i;j<=m;j++)
if(c[j][i])
{
flag=j;
break;
}
if(!flag)
{
gao(i);
return;
}
if(flag!=i)
{
for(int k=i;k<=n+1;k++)
swap(c[i][k],c[flag][k]);
}
ll inv=fp(c[i][i],p-2);
for(int j=1;j<=m;j++)
if(j!=i&&c[j][i])
{
ll v=c[j][i]*inv%p;
for(int k=i;k<=n+1;k++)
c[j][k]=(c[j][k]-v*c[i][k])%p;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d%lld",&n,&p);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%lld",&a[1][i][j]);
for(int i=1;i<=n;i++)
a[0][i][i]=1;
for(int i=2;i<=n;i++)
a[i]=a[i-1]*a[1];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
m++;
for(int k=0;k<=n;k++)
c[m][k+1]=a[k][i][j];
}
gao();
return 0;
}

【XSY3154】入门多项式 高斯消元的更多相关文章

  1. 高斯消元几道入门题总结POJ1222&&POJ1681&&POJ1830&&POJ2065&&POJ3185

    最近在搞高斯消元,反正这些题要么是我击败了它们,要么就是这些题把我给击败了.现在高斯消元专题部分还有很多题,先把几道很简单的入门题总结一下吧. 专题:http://acm.hust.edu.cn/vj ...

  2. UVALive - 6185 Find the Outlier暴力填表+高斯消元+卡eps

    https://cn.vjudge.net/problem/UVALive-6185 我真的是服了orz eps 1e5,1e6过不了 开1e2 1e1都能过 题意:给你一个d阶多项式f的f(0),f ...

  3. BZOJ3601. 一个人的数论(狄利克雷卷积+高斯消元)及关于「前 $n$ 个正整数的 $k$ 次幂之和是关于 $n$ 的 $k+1$ 次多项式」的证明

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3601 题解 首先还是基本的推式子: \[\begin{aligned}f_d(n) &a ...

  4. 【BZOJ2137】submultiple 高斯消元求伯努利数

    [BZOJ2137]submultiple Description 设函数g(N)表示N的约数个数.现在给出一个数M,求出所有M的约数x的g(x)的K次方和. Input 第一行输入N,K.N表示M由 ...

  5. BZOJ4689 Find the Outlier 【高斯消元】*

    BZOJ4689 Find the Outlier Description Abacus教授刚刚完成了一个制作数表的计算引擎的设计.它被设计用于同时计算一个多项式在许多点的取值.例如对于多项式 f(x ...

  6. 【bzoj3601】一个人的数论 莫比乌斯反演+莫比乌斯函数性质+高斯消元

    Description Sol 这题好难啊QAQ 反正不看题解我对自然数幂求和那里是一点思路都没有qwq 先推出一个可做一点的式子: \(f(n)=\sum_{k=1}^{n}[(n,k)=1]k^d ...

  7. SPOJ HIGH(生成树计数,高斯消元求行列式)

    HIGH - Highways no tags  In some countries building highways takes a lot of time... Maybe that's bec ...

  8. [bzoj3601] 一个人的数论 [莫比乌斯反演+高斯消元]

    题面 传送门 思路 这题妙啊 先把式子摆出来 $f_n(d)=\sum_{i=1}^n[gcd(i,n)==1]i^d$ 这个$gcd$看着碍眼,我们把它反演掉 $f_n(d)=\sum_{i=1}^ ...

  9. BZOJ1013 + BZOJ1923 + POJ1830 (高斯消元)

    三个题放在一起写了 主要是搞搞模板 在这里简述一下怎么写高斯消元 就和代数里学的加减消元学的一样 把矩阵化为上三角形形式 然后进行回代 同时枚举当前要消元的未知数和当前化简到哪一行了 然后从这一行往后 ...

随机推荐

  1. 《Odoo开发指南》精选分享—第1章-开始使用Odoo开发(1)

    引言 在进入Odoo开发之前,我们需要建立我们的开发环境,并学习它的基本管理任务. 在本章中,我们将学习如何设置工作环境,在这里我们将构建我们的Odoo应用程序.我们将学习如何设置Debian或Ubu ...

  2. Python开发爬虫之BeautifulSoup解析网页篇:爬取安居客网站上北京二手房数据

    目标:爬取安居客网站上前10页北京二手房的数据,包括二手房源的名称.价格.几室几厅.大小.建造年份.联系人.地址.标签等. 网址为:https://beijing.anjuke.com/sale/ B ...

  3. Android为TV端助力context转换类型

  4. eclipse如何修改android工程的包名?

    在我们android项目开发到一定的程度时由于需要,我们必须修改一下工程的包名,以便更好的发布我们的项目.但是在这个过程中有时候修改好了之后会出现一些错误.下面由小编一步步教你如何更改包名,和解决出现 ...

  5. SpringBoot数据库读写分离之基于Docker构建主从数据库同步实例

    看了好久的SpringBoot结合MyBatista实现读写,但是一直没有勇气实现他,今天终于接触到了读写分离的东西,读写分离就是讲读操作执行在Slave数据库(从数据库),写操作在Master数据库 ...

  6. ES6使用的一些方法

    查找数组中符合条件的所有记录 var list=[ {id:1,name:"张三"}, {id:2,name:"李四"}, {id:3,name:"王 ...

  7. 解决vs启动出现“cannot find one or more components .Please reinstall the application”

    参考下文: https://blog.csdn.net/novice_growth/article/details/71627395

  8. javaweb学习--javabean

    阅读电子书<Java Web从入门到精通>密码:461c,学习JavaWeb基础知识 JavaBean类似于.net的实体类,但是规则上稍复杂一些,能实现的功能也多一些 一.介绍 1.规则 ...

  9. python3 int(整型)

    __abs__(返回绝对值) n = -5 print(n.__abs__()) #输出:5 __add__(相加,运算符:+) n = 3 print(n.__add__(5)) #输出:8 __a ...

  10. 我的第一个python web开发框架(32)——定制ORM(八)

    写到这里,基本的ORM功能就完成了,不知大家有没有发现,这个ORM每个方法都是在with中执行的,也就是说每个方法都是一个完整的事务,当它执行完成以后也会将事务提交,那么如果我们想要进行一个复杂的事务 ...