COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通
枚举入度为0的一层
卷积
发现有式子:
由$n^2-i^2-(n-i)^2=2*i*(n-i)$
可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt 2}^{(i^2)}*{\sqrt 2}^{(n-i)^2}}$
设$g(n)={\sqrt 2}^{(n^2)}$
则,$2^{i*(n-i)}=\frac{g(n)}{g(i)*g(n-i)}$
指数相乘变成指数相加减,把$g(n)$除过去即可
连通
弱联通:变成无向边是连通的
f(n)表示n个点的DAG个数,g(n)表示n个点的弱连通DAG个数
$f(n)=\sum_{i=0}^{n-1} C(n-1,i)*g(n-i)*f(i)$
不妨设$g[0]=0
则$\frac{f(n)}{(n-)!}=\sum_{i=0}^{n} \frac{g(n-i)}{(n-i-1)!}*\frac{f(i)}{i!}$
所以,如果把F和G看成f和g的EGF
不妨设$g[0]=0
有$F'=G'*F$
当$G=lnF$时候,恰好成立
所以,$G=ln F$
PS:不连通转连通都可以直接放上Ln了事
COGS 2353 2355 2356 2358 有标号的DAG计数的更多相关文章
- cogs 2355. [HZOI 2015] 有标号的DAG计数 II
题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...
- COGS 2396 2397 [HZOI 2015]有标号的强连通图计数
题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
随机推荐
- npm缺少css-loader,/style-compiler,stylus-loader问题,npm没有权限无法全局更新问题【已解决】
ERROR in ./node_modules/css-loader!./node_modules/vue-loader/lib/style-compiler?{"vue":tru ...
- shell脚本批量ssh登陆主机并执行命令
shell脚本批量ssh登陆主机并执行命令 今天在客户现场遇到了这个问题,客户没有管理工具,无法批量登陆主机下发命令,几个个C段啊,让我一个一个登陆,.................. 所以写了个s ...
- Linux PXE无人值守网络装机
Linux PXE无人值守网络装机 一.实验环境: 2台Linux系统(RHEL6.5版本),1台作为:PXE远程安装服务器(安装dhcp服务.ftp服务.tftp服务),另1台作为:客户端(未装RH ...
- MFC字体
GDI字体分3类:点阵字体(raster font).笔画字体(stroke font)和Truetype字体. 默认点阵字体有7种: System (用于SYSTEM_FONT) ...
- LeetCode算法题-Student Attendance Record I(Java实现)
这是悦乐书的第258次更新,第271篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第125题(顺位题号是551).您将获得一个表示学生出勤记录的字符串. 该记录仅包含以下 ...
- html+css 制作简易导航栏
二话不说直接上代码(萌新:实在也没什么好说的) <!DOCTYPE html> <html lang="en" xmlns="http://www.w3 ...
- pymsql模块
老师的博客地址:http://www.cnblogs.com/wupeiqi/articles/5713330.html 通过pymysql 模块可以通过朋友去操作mysql 数据库,首先的在pip上 ...
- 【转】Vue.js中 watch 的高级用法
假设有如下代码: <div> <p>FullName: {{fullName}}</p> <p>FirstName: <input type=&q ...
- react组件之间的通信
通过props传递 共同的数据放在父组件上, 特有的数据放在自己组件内部(state),通过props可以传递一般数据和函数数据, 只能一层一层传递 一般数据-->父组件传递数据给子组件--&g ...
- Vue 自定义一个插件的用法、小案例及在项目中的应用
1.开发插件 install有两个参数,第一个是Vue构造器,第二个参数是一个可选的选项对象 MyPlugin.install = function (Vue, options) { // 1 ...