不用连通

枚举入度为0的一层

卷积

发现有式子:

由$n^2-i^2-(n-i)^2=2*i*(n-i)$

可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt 2}^{(i^2)}*{\sqrt 2}^{(n-i)^2}}$

设$g(n)={\sqrt 2}^{(n^2)}$

则,$2^{i*(n-i)}=\frac{g(n)}{g(i)*g(n-i)}$

指数相乘变成指数相加减,把$g(n)$除过去即可

连通

弱联通:变成无向边是连通的

f(n)表示n个点的DAG个数,g(n)表示n个点的弱连通DAG个数

$f(n)=\sum_{i=0}^{n-1} C(n-1,i)*g(n-i)*f(i)$

不妨设$g[0]=0

则$\frac{f(n)}{(n-)!}=\sum_{i=0}^{n} \frac{g(n-i)}{(n-i-1)!}*\frac{f(i)}{i!}$

所以,如果把F和G看成f和g的EGF

不妨设$g[0]=0

有$F'=G'*F$

当$G=lnF$时候,恰好成立

所以,$G=ln F$

PS:不连通转连通都可以直接放上Ln了事

luoguP4841 城市规划

COGS 2392 2393 2395 有标号的二分图计数

COGS 2353 2355 2356 2358 有标号的DAG计数的更多相关文章

  1. cogs 2355. [HZOI 2015] 有标号的DAG计数 II

    题目分析 来自2013年王迪的论文<浅谈容斥原理> 设\(f_{n,S}\)表示n个节点,入度为0的点集恰好为S的方案数. 设\(g_{n,S}\)表示n个节点,入度为0的点集至少为S的方 ...

  2. COGS 2396 2397 [HZOI 2015]有标号的强连通图计数

    题意:求n个点有向图其中SCC是一个的方案数 考虑求出若干个不连通的每个连通块都是SCC方案数然后再怎么做一做.(但是这里不能用Ln,因为推不出来) 设$f_n$为答案, $g_n$为n个点的有向图, ...

  3. 有标号的DAG计数(FFT)

    有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...

  4. COGS2356 【HZOI2015】有标号的DAG计数 IV

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...

  5. COGS2355 【HZOI2015】 有标号的DAG计数 II

    题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...

  6. 【题解】有标号的DAG计数4

    [HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...

  7. 【题解】有标号的DAG计数3

    [HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...

  8. 【题解】有标号的DAG计数2

    [HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...

  9. 【题解】有标号的DAG计数1

    [HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...

随机推荐

  1. Docker入门笔记

    Docker入门笔记 随笔记录初学Docker遇到的问题, 以免下次再犯. 本机系统Ubuntu18.04 安装 Docker有2个版本 Community Edition (CE) 社区版(免费) ...

  2. MongoDB MapReduce用法简介

    Map-Reduce部分:Map-Reduce相当于关系型数据库中的group by,主要用于统计数据之用.MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用. 语法 db ...

  3. c/c++ llinux epoll系列5 解除epoll_wait状态

    linux epoll系列5 解除epoll_wait状态 有时候会有解除epoll_wait状态的需求. 实现方法: 1,给执行epoll_wait的程序发signal. 2,使用sockpair. ...

  4. Android 系统版本和API level的关系表

    Android 系统版本和API level的关系表 wiki: https://zh.wikipedia.org/wiki/Android%E6%AD%B7%E5%8F%B2%E7%89%88%E6 ...

  5. pymysql的使用

    import pymysql #打开数据库 (如果连接失败会报错)#db = pymysql.connect(host = '127.0.0.1', port = 3306, user = 'minb ...

  6. c#实验一:基于winform的冒泡排序练习

    一.界面设计 在排序前textbox中输入数字,以逗号隔开,通过两个button实现降序排序或升序排序,然后在排序后textbox中显示 三个关键点: 1.监测输入是否合法,最好使用正则表达式 2.拆 ...

  7. 英语口语练习系列-C16-钱

    词汇学习 beer [bɪə(r)] n. 啤酒 a glass of beer 一杯啤酒 five glasses of beer 五杯啤酒 beers (种类) Shall we have a b ...

  8. 黑客游戏榜中榜 第一期writeup

    [榜中榜 第一期传送门] 注:作者对游戏过程中右键点击进行了限制,下文所提到的"查看源代码",均通过在url头前加上"view-source:"来实现 第一题 ...

  9. Enterprise architect 类图加时序图

    原文地址:https://segmentfault.com/a/1190000005639047#articleHeader2 新建一个Project 没什么好说的,“文件-新建项目”,然后选择保存位 ...

  10. [APIO2014]序列分割

    嘟嘟嘟 复习一下斜率优化,感觉已经忘得差不多了-- 这题切入点在与答案跟切的顺序无关. 证明就是假如有三段权值分别为\(x, y, z\),那么这两刀不管按什么顺序切,得到的结果都是\(xy + xz ...