扩展欧几里得 exGCD
Elementary Number Theory - Extended Euclid Algorithm
Time Limit : 1 sec, Memory Limit : 65536 KB
Japanese version is here
Extended Euclid Algorithm
Given positive integers a and b, find the integer solution (x, y) to ax+by=gcd(a,b), where gcd(a,b) is the greatest common divisor of a and b.
Input
a b
Two positive integers a and b are given separated by a space in a line.
Output
Print two integers x and y separated by a space. If there are several pairs of such x and y, print that pair for which |x|+|y| is the minimal (primarily) and x ≤ y (secondarily).
Constraints
- 1 ≤ a, b ≤ 109
Sample Input 1
4 12
Sample Output 1
1 0
Sample Input 2
3 8
Sample Output 2
3 -1
#include <bits/stdc++.h> #define fread_siz 1024 inline int get_c(void)
{
static char buf[fread_siz];
static char *head = buf + fread_siz;
static char *tail = buf + fread_siz; if (head == tail)
fread(head = buf, , fread_siz, stdin); return *head++;
} inline int get_i(void)
{
register int ret = ;
register int neg = false;
register int bit = get_c(); for (; bit < ; bit = get_c())
if (bit == '-')neg ^= true; for (; bit > ; bit = get_c())
ret = ret * + bit - ; return neg ? -ret : ret;
} int exgcd(int a, int b, int &x, int &y)
{
if (!b)
{
x = ;
y = ;
return a;
}
int ret = exgcd(b, a%b, y, x);
y = y - x * (a / b);
return ret;
} signed main(void)
{
int x, y;
int a = get_i();
int b = get_i();
exgcd(a, b, x, y);
printf("%d %d\n", x, y);
}
@Author: YouSiki
扩展欧几里得 exGCD的更多相关文章
- 同余问题(一)——扩展欧几里得exgcd
前言 扩展欧几里得算法是一个很好的解决同余问题的算法,非常实用. 欧几里得算法 简介 欧几里得算法,又称辗转相除法. 主要用途 求最大公因数\(gcd\). 公式 \(gcd(a,b)=gcd(b,a ...
- 浅谈扩展欧几里得[exgcd] By cellur925
关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ****** ...
- 扩展欧几里得(exgcd)与同余详解
exgcd入门以及同余基础 gcd,欧几里得的智慧结晶,信息竞赛的重要算法,数论的...(编不下去了 讲exgcd之前,我们先普及一下同余的性质: 若,那么 若,,且p1,p2互质, 有了这三个式子, ...
- 扩展欧几里得(exgcd)-求解不定方程/求逆元
贝祖定理:即如果a.b是整数,那么一定存在整数x.y使得ax+by=gcd(a,b).换句话说,如果ax+by=m有解,那么m一定是gcd(a,b)的若干倍.(可以来判断一个这样的式子有没有解)有一个 ...
- 数论--扩展欧几里得exgcd
算法思想 我们想求得一组\(x,y\)使得 \(ax+by = \gcd(a,b)\) 根据 \(\gcd(a,b) = \gcd(b,a\bmod b)\) 如果我们现在有\(x',y'\) 使得 ...
- EXGCD 扩展欧几里得
推荐:https://www.zybuluo.com/samzhang/note/541890 扩展欧几里得,就是求出来ax+by=gcd(x,y)的x,y 为什么有解? 根据裴蜀定理,存在u,v使得 ...
- exgcd扩展欧几里得求解的个数
知识储备 扩展欧几里得定理 欧几里得定理 (未掌握的话请移步[扩展欧几里得]) 正题 设存在ax+by=gcd(a,b),求x,y.我们已经知道了用扩欧求解的方法是递归,终止条件是x==1,y==0: ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
随机推荐
- SpringMVC的执行流程(二)
文字解析: 1.客户端发出一个http请求给web服务器,web服务器对http请求进行解析,如果匹配 DispatcherServlet的请求映射路径(在web.xml中指定),web容器将请求转交 ...
- Eclipse(一)
Eclipse的初步学习
- 配置rsync服务,数据同步。
这部分设计服务器端和客户端. [服务器端] 如果服务器没有安装rsync服务则使用yum安装rsync服务. yum install rsync 然后 vim /etc/xinetd.d/rsync ...
- js判断窗体或容器滚动条到底部
NO1---jquery判断窗体滚动条到底部 $(window).scroll(function () {if ($(window).scrollTop() >= $(document).hei ...
- 深入理解js的变量提升和函数提升
一.变量提升 在ES6之前,JavaScript没有块级作用域(一对花括号{}即为一个块级作用域),只有全局作用域和函数作用域.变量提升即将变量声明提升到它所在作用域的最开始的部分.上个简历的例子如: ...
- Android Studio多渠道打包
本文所讲述的多渠道打包是基于友盟统计实施的. 多渠道打包的步骤: 1.在AndroidManifest.xml里设置动态渠道变量 <meta-data android:name="UM ...
- 自动将指定目录下面的文件转换为UTF-8
using System; using System.Collections; using System.Collections.Generic; using System.IO; using Sys ...
- Windows操作系统下远程连接MySQL数据库
用Eclipse做一个后台项目,但是数据库不想放在本地电脑,于是买了一个腾讯云服务器(学生有优惠,挺便宜的),装上MySQL数据库,但是测试连接的时候,发现总是连接不是上,但是本地数据库可以连接,于是 ...
- 【译】Getting Physical With Memory
当我们试图去了解复杂系统时,去除其抽象层,直接关注最底层,我们会更容易去理解.使用这种方法,我们来看一下内存和 I/O 接口的最简单和基础的层:处理器和总线的接口.这些细节是更上层问题的基础,例如线程 ...
- pmd静态代码分析
在正式进入测试之前,进行一定的静态代码分析及code review对代码质量及系统提高是有帮助的,以上为数据证明 Pmd 它是一个基于静态规则集的Java源码分析器,它可以识别出潜在的如下问题:– 可 ...