生成函数好题!

搬一手铃悬的题解(侵删)

现在只需要考虑怎么求出g和逆变换即可,其实也就是对函数F(x)求F(x+1)和F(x-1)。

直接二项式定理展开发现是个卷积的形式,大力NTT即可。

#include<bits/stdc++.h>
#define N 440000
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const int d=3,mo=998244353;
int ksm(int x,int k)
{
int ans=1;
while(k)
{
if(k&1)ans=1ll*ans*x%mo;
k>>=1;x=1ll*x*x%mo;
}
return ans;
}
int rev[N];
void ntt(int *f,int n,int flag)
{
for(int i=0;i<n;i++)
{
rev[i]=(rev[i>>1]>>1)+(i&1)*(n>>1);
if(i<rev[i])swap(f[i],f[rev[i]]);
}
for(int k=2,kk=1;k<=n;k<<=1,kk<<=1)
{
int wn=ksm(d,(mo-1)/k);
if(flag==-1)wn=ksm(wn,mo-2);
for(int i=0;i<n;i+=k)
for(int j=0,w=1;j<kk;j++,w=1ll*w*wn%mo)
{
int t=1ll*w*f[i+j+kk]%mo;
f[i+j+kk]=(f[i+j]-t)%mo;
f[i+j]=(f[i+j]+t)%mo;
}
}
if(flag==-1)
{
int k=ksm(n,mo-2);
for(int i=0;i<n;i++)f[i]=1ll*f[i]*k%mo;
}
}
int a[N],b[N];
void mul(int len)
{
ntt(a,len,+1);ntt(b,len,+1);
for(int i=0;i<len;i++)a[i]=1ll*a[i]*b[i]%mo;
ntt(a,len,-1);
}
int n,m,len,f[N],g[N],fac[N],vac[N];
int main()
{
n=read();ll t;cin>>t;m=(t%(mo-1));len=1;
while(len<2*(n+1))len<<=1;
for(int i=0;i<=n;i++)f[i]=read();
fac[0]=vac[0]=1;
for(int i=1;i<=len;i++)fac[i]=1ll*fac[i-1]*i%mo;
vac[len]=ksm(fac[len],mo-2);
for(int i=len-1;i>=1;i--)vac[i]=1ll*vac[i+1]*(i+1)%mo;
//get g(x)=f(x+1)
for(int i=0;i<=n;i++)a[i]=1ll*f[i]*fac[i]%mo,b[i]=vac[i];
for(int i=n+1;i<len;i++)a[i]=b[i]=0;
reverse(a,a+n+1);mul(len);
for(int i=0;i<=n;i++)g[i]=1ll*vac[i]*a[n-i]%mo;
//solve get g*(x)
for(int i=0;i<=n;i++)g[i]=1ll*ksm(ksm(i+1,m),mo-2)*g[i]%mo;
//get f*(x)=g(x-1)
for(int i=0;i<=n;i++)a[i]=1ll*g[i]*fac[i]%mo,b[i]=1ll*ksm(-1,i)*vac[i]%mo;
for(int i=n+1;i<len;i++)a[i]=b[i]=0;
reverse(a,a+n+1);mul(len);
for(int i=0;i<=n;i++)f[i]=1ll*vac[i]*a[n-i]%mo;
//print f(x)
for(int i=0;i<=n;i++)printf("%d ",(f[i]%mo+mo)%mo);
return 0;
}

CF923E Perpetual Subtraction的更多相关文章

  1. 【CF932E】Perpetual Subtraction(NTT,线性代数)

    [CF932E]Perpetual Subtraction(NTT,线性代数) 题面 洛谷 CF 题解 设\(f_{i,j}\)表示\(i\)轮之后这个数恰好为\(j\)的概率. 得到转移:\(\di ...

  2. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...

  3. Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. ZJOI2018游记Round1

    广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...

  6. PAT 解题报告 1050. String Subtraction (20)

    1050. String Subtraction (20) Given two strings S1 and S2, S = S1 - S2 is defined to be the remainin ...

  7. [leetcode-592-Fraction Addition and Subtraction]

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  8. [LeetCode] Fraction Addition and Subtraction 分数加减法

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  9. [Swift]LeetCode592. 分数加减运算 | Fraction Addition and Subtraction

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

随机推荐

  1. 读C#图解教程的笔记

    第一章记录: 格式化字符串 Console.WriteLine("{0:D}", 123456789);//表示十进制字符串 Console.WriteLine("{0: ...

  2. Dynamics CRM On-Premise V9安装手记

    下载地址: https://download.microsoft.com/download/A/D/D/ADDD6898-4EFA-46FA-80B6-6FE9A3CDED63/CRM9.0-Serv ...

  3. qt手写输入法资料

    论文: https://max.book118.com/html/2015/1229/32204490.shtm 开源库: zinna Linux下使用的Tegaki就是使用的这个库 csdn博客资料 ...

  4. IP通信基础的第一个星期

    IP通信基础不仅是很多专业课程的基础,同时学好它,在以后很多工作上都可以运用到,有网络工程师.通信工程师等等,当然,有些证书也会涉及到IP通信基础,有网络中级高级 CCNA等等. 那么,学好IP通信基 ...

  5. VMware install MikroTik RouterOS

    1 download the vmdk from Mikro Tik official website 2 create a new vmware host with use an exited vm ...

  6. redis恢复(aof)

    ----------------redis备份恢复方法-----------------------------1.采用aof恢复方法若appendonly设置为no的情况下,在每个节点上执行bgre ...

  7. nginx 1.14.2 配置文件优化精选

    user nobody; worker_processes ; worker_rlimit_nofile ; events { use epoll; worker_connections ; } ht ...

  8. JAVA随笔----浅谈lombok注解

    在Java开发中,注解可谓是帮了大忙.注解的使用帮助我们简化了代码,让代码更加简洁.今天就来谈谈常用的Lombok注解. lombok注解文档 lombok官方下载地址 先看一下lombok支持的一些 ...

  9. Bootstrap3基础 栅格系统 标尺(col-lg/md/sm/xs-1)

      内容 参数   OS   Windows 10 x64   browser   Firefox 65.0.2   framework     Bootstrap 3.3.7   editor    ...

  10. 【用户权限】MongoDB用户权限

    一.数据库用户角色: read:允许用户读取指定数据库readWrite:允许用户读写指定数据库 二.数据库管理角色:dbAdmin.dbOwner.userAdmin: dbAdmin:允许用户在指 ...