生成函数好题!

搬一手铃悬的题解(侵删)

现在只需要考虑怎么求出g和逆变换即可,其实也就是对函数F(x)求F(x+1)和F(x-1)。

直接二项式定理展开发现是个卷积的形式,大力NTT即可。

#include<bits/stdc++.h>
#define N 440000
#define eps 1e-7
#define inf 1e9+7
#define db double
#define ll long long
#define ldb long double
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
const int d=3,mo=998244353;
int ksm(int x,int k)
{
int ans=1;
while(k)
{
if(k&1)ans=1ll*ans*x%mo;
k>>=1;x=1ll*x*x%mo;
}
return ans;
}
int rev[N];
void ntt(int *f,int n,int flag)
{
for(int i=0;i<n;i++)
{
rev[i]=(rev[i>>1]>>1)+(i&1)*(n>>1);
if(i<rev[i])swap(f[i],f[rev[i]]);
}
for(int k=2,kk=1;k<=n;k<<=1,kk<<=1)
{
int wn=ksm(d,(mo-1)/k);
if(flag==-1)wn=ksm(wn,mo-2);
for(int i=0;i<n;i+=k)
for(int j=0,w=1;j<kk;j++,w=1ll*w*wn%mo)
{
int t=1ll*w*f[i+j+kk]%mo;
f[i+j+kk]=(f[i+j]-t)%mo;
f[i+j]=(f[i+j]+t)%mo;
}
}
if(flag==-1)
{
int k=ksm(n,mo-2);
for(int i=0;i<n;i++)f[i]=1ll*f[i]*k%mo;
}
}
int a[N],b[N];
void mul(int len)
{
ntt(a,len,+1);ntt(b,len,+1);
for(int i=0;i<len;i++)a[i]=1ll*a[i]*b[i]%mo;
ntt(a,len,-1);
}
int n,m,len,f[N],g[N],fac[N],vac[N];
int main()
{
n=read();ll t;cin>>t;m=(t%(mo-1));len=1;
while(len<2*(n+1))len<<=1;
for(int i=0;i<=n;i++)f[i]=read();
fac[0]=vac[0]=1;
for(int i=1;i<=len;i++)fac[i]=1ll*fac[i-1]*i%mo;
vac[len]=ksm(fac[len],mo-2);
for(int i=len-1;i>=1;i--)vac[i]=1ll*vac[i+1]*(i+1)%mo;
//get g(x)=f(x+1)
for(int i=0;i<=n;i++)a[i]=1ll*f[i]*fac[i]%mo,b[i]=vac[i];
for(int i=n+1;i<len;i++)a[i]=b[i]=0;
reverse(a,a+n+1);mul(len);
for(int i=0;i<=n;i++)g[i]=1ll*vac[i]*a[n-i]%mo;
//solve get g*(x)
for(int i=0;i<=n;i++)g[i]=1ll*ksm(ksm(i+1,m),mo-2)*g[i]%mo;
//get f*(x)=g(x-1)
for(int i=0;i<=n;i++)a[i]=1ll*g[i]*fac[i]%mo,b[i]=1ll*ksm(-1,i)*vac[i]%mo;
for(int i=n+1;i<len;i++)a[i]=b[i]=0;
reverse(a,a+n+1);mul(len);
for(int i=0;i<=n;i++)f[i]=1ll*vac[i]*a[n-i]%mo;
//print f(x)
for(int i=0;i<=n;i++)printf("%d ",(f[i]%mo+mo)%mo);
return 0;
}

CF923E Perpetual Subtraction的更多相关文章

  1. 【CF932E】Perpetual Subtraction(NTT,线性代数)

    [CF932E]Perpetual Subtraction(NTT,线性代数) 题面 洛谷 CF 题解 设\(f_{i,j}\)表示\(i\)轮之后这个数恰好为\(j\)的概率. 得到转移:\(\di ...

  2. Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)

    手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...

  3. Codeforces 923E - Perpetual Subtraction(微积分+生成函数+推式子+二项式反演+NTT)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 首先考虑最朴素的 \(dp\),设 \(dp_{z,i}\) 表示经 ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. ZJOI2018游记Round1

    广告 ZJOI2018Round2游记 All Falls Down 非常感谢学弟学妹们捧场游记虽然这是一篇假游记 ZJOI Round1今天正式落下帷幕.在这过去的三天里遇到了很多朋友,见识了很多有 ...

  6. PAT 解题报告 1050. String Subtraction (20)

    1050. String Subtraction (20) Given two strings S1 and S2, S = S1 - S2 is defined to be the remainin ...

  7. [leetcode-592-Fraction Addition and Subtraction]

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  8. [LeetCode] Fraction Addition and Subtraction 分数加减法

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  9. [Swift]LeetCode592. 分数加减运算 | Fraction Addition and Subtraction

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

随机推荐

  1. git stash pop 冲突,git stash list 中的记录不会自动删除的解决方法

    在使用git stash代码时,经常会碰到有冲突的情况,一旦出现冲突的话,系统会认为你的stash没有结束. 导致的结果是git stash list 中的列表依然存在,实际上代码已经pop出来了. ...

  2. Winform 加载datagridview

    string str = @"Data Source=(localdb)\MSSQLLocalDB;Initial Catalog=Test;Integrated Security=True ...

  3. vue scrolle在tab 中使用

    1. 使用npm 安装 npm i vue-scroller -S 地址: https://github.com/wangdahoo/vue-scroller2. 引入 main.js: import ...

  4. Gradle构建多模块项目

    通常我在使用Maven构建项目的时候是将应用项目划分为多个更小的模块. Gradle 项目也拥有多于一个组件,我们也将其称之为多项目构建(multi-project build). 我们首先创建一个多 ...

  5. android开发_view和view属性

    一.view视图的宽度和高度属性,属性值:固定和浮动两种状态 1属性为固定值 <View android:layout_width="30dp" android:layout ...

  6. Java基础学习-基本数据类型变量的定义和使用

    注意:如果使用notepad++编码,在cmd控制台编译时报错(编码GBK的不可映射字符),可以参考如下链接进行设置:https://jingyan.baidu.com/article/e3c78d6 ...

  7. 确定有穷自动机(DFA)的化简(最小化)

    参考博客地址:https://blog.csdn.net/qq_33605778/article/details/80105658

  8. 阿里云centos怎么用xshell5登陆

    第一种是用ssh,安装Xshell5   打开XShell   新建会话输入ip   选择新建的会话,点击连接,选择接受并保护,输入root,点击确定   输入密码   已经连接成功了,用Xshell ...

  9. fcntl设置FD_CLOEXEC标志作用【转】

    本文转载自:https://blog.csdn.net/ustc_dylan/article/details/6930189 通过fcntl设置FD_CLOEXEC标志有什么用?close on ex ...

  10. 【搭建】MongoDB在Linux环境的搭建

    环境:Linux CentOS6.5,mongo 4.1.6 一.下载安装 1.创建mongo的安装文件夹,以及安装包上传路径 mkdir /opt/module mkdir /opt/softwar ...