题目描述

你有一堆棍子。每个木棒的长度是一个正整数。

你想要一组棍子所有的棍子都有相同的长度。您可以通过执行零个或多个步骤来更改当前集合。每个步骤必须如下所示:

你选择一根棍子。所选棒的长度必须至少为2。设L为所选木棍的长度。

如果L是偶数,把棍子切成两根长度为L/2的棍子。否则,把它切成长度为(L-1)/2和(L+1)/2的棒。把两根新棍子中的一根留下,把另一根扔掉。

可以证明,任何一种集合都可以变成一种长度相同的集合。给定当前棍子集合的长度,计算并返回达到目标所需的最小步骤数。

输入

多组数据,第一行一个整数T,表示数据组数,T<=6

每组数据:

第一行一个整数N,表示棍子数目。(2<=N<=50)

第二行N个整数,a[i]表示第i个棍子的长度。(1<=a[i]<=10^9)

输出

输出达到目标所需的最小步骤数

样例输入

4
2
11 4
4
1000 1000 1000 1000
7
1 2 3 4 5 6 7
6
13 13 7 11 13 11

样例输出

3
0
10
11

Solution

这道题需要注意的是当棍子长度是奇数的时候情况是不唯一的;

这样如果存储所有可能的状态是 \(2^30\) 级别的, 显然不能承受.

但是我们发现一个 性质 : 对于一个长度是奇数的棍子, 执行 k 次操作的可能长度只有 2 种, 这是因为当一个奇数被分成 奇数+偶数 时, 偶数接下来的所有情况都会被包含在奇数里. 所以偶数往下延伸的情况是没有必要的,每一层只有 1 个节点会往后延伸, 每一层最多只有 2 个节点.

这有点像线段树的性质.

Code

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
 
int n, step[55][31][2], maxstep[55];
 
inline int solve(int len){
    int ans = 0;
    for (int i = 1; i <= n; ++i){
        bool check = false;
        for (int j = 0; j <= 30; ++j)
            if (step[i][j][0] == len || step[i][j][1] == len){
                ans += j;
                check = true;
                break;
            }
        if (!check) return 100000000;
    }
    return ans;
}
 
int main(){
    int T; scanf("%d", &T);
    while (T--){
        scanf("%d", &n); memset(step, 0, sizeof(step));
        for (int i = 1; i <= n; ++i){
            scanf("%d", &step[i][0][0]);
            maxstep[i] = 0; int x = step[i][0][0];
            while (x > 1){
                ++maxstep[i];
                if (x % 2 == 0) step[i][maxstep[i]][0] = x / 2, x = x / 2;
                else{
                    step[i][maxstep[i]][0] = (x-1) / 2;
                    step[i][maxstep[i]][1] = (x+1) / 2;
                    if (x % 4 == 1) x = (x+1) / 2;
                    else x = (x-1) / 2;
                }
            }
        }
 
        /*for (int i = 1; i <= n; ++i)
            for (int j = 0; j <= maxstep[i]; ++j)
                printf("(%d,%d)%c", step[i][j][0], step[i][j][1], (j < maxstep[i]) ? ' ' : '\n');*/
         
        int Ans = 100000000;
 
        for (int i = 0; i <= maxstep[1]; ++i){
            for (int j = 0; j <= 1; ++j)
                if (step[1][i][j]){
                    Ans = min(Ans, solve(step[1][i][j]));
                }
        }
 
        printf("%d\n", Ans);
    }
    return 0;
}

[TopCoder]棍子的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 将外卖O2O广告一棍子打成竞价排名,秤把平了吗?

    近日,诸多媒体报道称美团外卖.饿了么等外卖O2O将竞价排名引入外卖平台当中进行广告运营一事闹得沸沸扬扬.那么,美团外卖.饿了么真的都是竞价排名吗? 其实,美团外卖的付费推广仅仅只是针对列表的固定位置, ...

  8. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  9. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

随机推荐

  1. 微服务与容器化Docker

    1.Docker的应用案例 2. 3. 4.docker的核心:镜像.仓库.容器 Build构建镜像:类似于集装箱. Ship运输镜像,仓库:类似于码头.将镜像运输到仓库. Run运行镜像:容器:类似 ...

  2. Mysql加锁过程详解(9)-innodb下的记录锁,间隙锁,next-key锁

    Mysql加锁过程详解(1)-基本知识 Mysql加锁过程详解(2)-关于mysql 幻读理解 Mysql加锁过程详解(3)-关于mysql 幻读理解 Mysql加锁过程详解(4)-select fo ...

  3. 《JavaScript.DOM》读书笔记

  4. 第四节:MVC中AOP思想的体现(四种过滤器)并结合项目案例说明过滤器的实际用法

    一. 简介 MVC中的过滤器可以说是MVC框架中的一种灵魂所在,它是MVC框架中AOP思想的具体体现,所以它以面向切面的形式无侵入式的作用于代码的业务逻辑,与业务逻辑代码分离,一经推出,广受开发者的喜 ...

  5. BZOJ-2308 小z的袜子(莫队)

    题目链接 题意 $n$点$m$次询问区间内随机取两个数是相同数的概率 思路 莫队入门题,对询问按块排序后更新答案,复杂度$O(n\sqrt{n})$ 代码 //#pragma comment(link ...

  6. spring事务源码分析结合mybatis源码(一)

    最近想提升,苦逼程序猿,想了想还是拿最熟悉,之前也一直想看但没看的spring源码来看吧,正好最近在弄事务这部分的东西,就看了下,同时写下随笔记录下,以备后查. spring tx源码分析 这里只分析 ...

  7. Web从入门到放弃<8>

    Ref: Cameron D. - HTML5, JavaScript and jQuery (Programmer to Programmer) - 2015 http://www.runoob.c ...

  8. Dos.Common

    引言: Dos.Common是一个开发中的常用类库,如HttpHelper.LogHelper.CacheHelper.CookieHelper.MapperHelper等等.与Dos.WeChat. ...

  9. extensible_index

    create user ex identified by oracle; grant Resource to ex;grant connect to ex;grant create view to e ...

  10. jQuery选择器 :eq() 不能识别变量参数的问题解决方案

    问题: js语法中,引号内变量会直接解释为字符串,因此使用:eq()时参数将被识别为字符串而不是变量指代的内容 如下错误写法: $(".circle span:eq(count-1)&quo ...