题目描述

你有一堆棍子。每个木棒的长度是一个正整数。

你想要一组棍子所有的棍子都有相同的长度。您可以通过执行零个或多个步骤来更改当前集合。每个步骤必须如下所示:

你选择一根棍子。所选棒的长度必须至少为2。设L为所选木棍的长度。

如果L是偶数,把棍子切成两根长度为L/2的棍子。否则,把它切成长度为(L-1)/2和(L+1)/2的棒。把两根新棍子中的一根留下,把另一根扔掉。

可以证明,任何一种集合都可以变成一种长度相同的集合。给定当前棍子集合的长度,计算并返回达到目标所需的最小步骤数。

输入

多组数据,第一行一个整数T,表示数据组数,T<=6

每组数据:

第一行一个整数N,表示棍子数目。(2<=N<=50)

第二行N个整数,a[i]表示第i个棍子的长度。(1<=a[i]<=10^9)

输出

输出达到目标所需的最小步骤数

样例输入

4
2
11 4
4
1000 1000 1000 1000
7
1 2 3 4 5 6 7
6
13 13 7 11 13 11

样例输出

3
0
10
11

Solution

这道题需要注意的是当棍子长度是奇数的时候情况是不唯一的;

这样如果存储所有可能的状态是 \(2^30\) 级别的, 显然不能承受.

但是我们发现一个 性质 : 对于一个长度是奇数的棍子, 执行 k 次操作的可能长度只有 2 种, 这是因为当一个奇数被分成 奇数+偶数 时, 偶数接下来的所有情况都会被包含在奇数里. 所以偶数往下延伸的情况是没有必要的,每一层只有 1 个节点会往后延伸, 每一层最多只有 2 个节点.

这有点像线段树的性质.

Code

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
 
int n, step[55][31][2], maxstep[55];
 
inline int solve(int len){
    int ans = 0;
    for (int i = 1; i <= n; ++i){
        bool check = false;
        for (int j = 0; j <= 30; ++j)
            if (step[i][j][0] == len || step[i][j][1] == len){
                ans += j;
                check = true;
                break;
            }
        if (!check) return 100000000;
    }
    return ans;
}
 
int main(){
    int T; scanf("%d", &T);
    while (T--){
        scanf("%d", &n); memset(step, 0, sizeof(step));
        for (int i = 1; i <= n; ++i){
            scanf("%d", &step[i][0][0]);
            maxstep[i] = 0; int x = step[i][0][0];
            while (x > 1){
                ++maxstep[i];
                if (x % 2 == 0) step[i][maxstep[i]][0] = x / 2, x = x / 2;
                else{
                    step[i][maxstep[i]][0] = (x-1) / 2;
                    step[i][maxstep[i]][1] = (x+1) / 2;
                    if (x % 4 == 1) x = (x+1) / 2;
                    else x = (x-1) / 2;
                }
            }
        }
 
        /*for (int i = 1; i <= n; ++i)
            for (int j = 0; j <= maxstep[i]; ++j)
                printf("(%d,%d)%c", step[i][j][0], step[i][j][1], (j < maxstep[i]) ? ' ' : '\n');*/
         
        int Ans = 100000000;
 
        for (int i = 0; i <= maxstep[1]; ++i){
            for (int j = 0; j <= 1; ++j)
                if (step[1][i][j]){
                    Ans = min(Ans, solve(step[1][i][j]));
                }
        }
 
        printf("%d\n", Ans);
    }
    return 0;
}

[TopCoder]棍子的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 将外卖O2O广告一棍子打成竞价排名,秤把平了吗?

    近日,诸多媒体报道称美团外卖.饿了么等外卖O2O将竞价排名引入外卖平台当中进行广告运营一事闹得沸沸扬扬.那么,美团外卖.饿了么真的都是竞价排名吗? 其实,美团外卖的付费推广仅仅只是针对列表的固定位置, ...

  8. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  9. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

随机推荐

  1. python 发送post和get请求

    摘自:http://blog.163.com/xychenbaihu@yeah/blog/static/132229655201231085444250/ 测试用CGI,名字为test.py,放在ap ...

  2. eMMC真能优化成UFS?谈谈手机闪存的文件系统

    和UFS闪存相比,eMMC的性能更弱,同一型号的手机混用这两种规格的闪存,让一些消费者感到了不满.对此,厂商称通过优化,eMMC的产品也可以获得优秀的体验.这个优化到底是怎么回事?根据以往的一些宣传, ...

  3. vue-cli3.0 gui(一)

    vue-cli3.0 gui 安装: npm i core-js -g:用于JavaScript的模块化标准库. npm i -g @vue/cli:vue的脚手架工具 运行: vue ui:运行vu ...

  4. python之shelve模块详解

    一.定义 Shelve是对象持久化保存方法,将对象保存到文件里面,缺省(即默认)的数据存储文件是二进制的. 二.用途 可以作为一个简单的数据存储方案. 三.用法 使用时,只需要使用open函数获取一个 ...

  5. 第十节:委托和事件(2)(泛型委托、Func和Action、事件及与委托的比较)

    一. 泛型委托 所谓的泛型委托,即自定义委托的参数可以用泛型约束,同时内置委托Func和Action本身就是泛型委托. 将上一个章节中的Calculator类中的方法用自定义泛型委托重新实现一下. p ...

  6. JavaScript 基本类型和引用类型

    前言 ECMAScript变量可能包含两种不同数据类型的值:基本类型值和引用类型值.基本类型值指的是简单的数据段,而引用类型值指那些可能由多个值构成的对象. 基本类型 Undefined.Null.B ...

  7. 导出CSV 换行问题。

    程序方面: 1.Windows 中的换行符"\r\n" 2.Unix/Linux 平台换行符是 "\n". 3.MessageBox.Show() 的换行符为 ...

  8. spring和mybatis的整合开发(基于MapperFactoryBean的整合开发(方便简单不复杂))

    MapperFactoryBean是mybati-spring团队提供的一个用于根据mapper接口生成mapper对象的类. 在spring配置文件中可以配置以下参数: 1.mapperInterf ...

  9. jquery.ajax()详解

    jQuery.ajax() 函数详解 traditional 如果你希望使用传统方式来序列化参数,将该属性设为true. 传递数组时, traditional必须为true var arr = []; ...

  10. Eclipse中的sysout与debug-遁地龙卷风

    (-1)调试 在读<<一个程序员的奋斗史>>时里面提到这是一件很low的事情,突然想到自己也一直用sysout, 我是一个有情怀的人! (0)sysout的坏处 之所以长久的使 ...