UVALive - 8512

题意 :给出一个包含n个元素的数组A以及一个k,接下来进行q次询问,每次询问给出 l 和 r ,

要你求出从A[l] , A[l+1] , A[l + 2],...,A[r]中任选出若干个数异或起来的值val,使得 k | val 最大,输出这个最大值。

思路 :既然是要使得k | val得到的值最大,那么val必然是k这个数上二进制位为0的位置为1的数,同时1的位数要尽可能的多。

这样我们就可以先对k取反,求出k二进制位为0的位数变成1的数p,再用A[i]与上p,将这些数放入线性基中。

由于每次都是区间查询,我们就可以利用线段树的思想,建立一棵结点为线性基的线段树,

每次区间查询的时候就查询出这几个区间合并后的线性基,再用线性基的性质查询最大值即可。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define maxn 12345
ll t,n,k,q,l,r,a[maxn],ans;
struct node
{
ll p[66];
void init()
{
memset(p,0,sizeof(p));
}
node()
{
memset(p,0,sizeof(p));
}
void add(ll x)
{
for(int i=60; i>=0; i--)
{
if(!(x&(1<<i)))continue;
if(!p[i])
{
p[i]=x;
break;
}
else x^=p[i];
}
}
node operator+(const node &b)const
{
node ret=b;
for(int i=60; i>=0; i--)
if(p[i])ret.add(p[i]);
return ret;
}
ll rp()
{
ll re=0;
for(int i=60; i>=0; i--)
if((re^p[i])>re)re^=p[i];
return re;
}
} tree[maxn*4];
void up(int root)
{
tree[root]=tree[root*2]+tree[root*2+1];
}
void bulid(int root,int l,int r)
{
tree[root].init();
if(l==r)
{
tree[root].add(a[l]);
return ;
}
int mid=(l+r)/2;
bulid(root*2,l,mid);
bulid(root*2+1,mid+1,r);
up(root);
}
node query(int root,int l,int r,int L,int R)
{
if(L<=l&&r<=R)
return tree[root];
int mid=(l+r)/2;
if(L>mid)return query(root*2+1,mid+1,r,L,R);
else if(R<=mid)return query(root*2,l,mid,L,R);
else return query(root*2,l,mid,L,R)+query(root*2+1,mid+1,r,L,R);
}
int main()
{
scanf("%lld",&t);
while(t--)
{
scanf("%lld%lld%lld",&n,&q,&k);
k=~k;
for(int i=1; i<=n; i++)
{
scanf("%lld",&a[i]);
a[i]=(a[i]&k);
}
k=~k;
bulid(1,1,n);
while(q--)
{
ans=k;
scanf("%lld%lld",&l,&r);
node tp=query(1,1,n,l,r);
ans=(ans|tp.rp());
printf("%lld\n",ans);
}
}
return 0;
}

  

XOR UVALive - 8512 -区间线性基合并的更多相关文章

  1. 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并

    题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...

  2. 【BZOJ-4568】幸运数字 树链剖分 + 线性基合并

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 238  Solved: 113[Submit][Status ...

  3. CodeForces 587 E.Duff as a Queen 线段树动态维护区间线性基

    https://codeforces.com/contest/587/problem/E 一个序列, 1区间异或操作 2查询区间子集异或种类数 题解 解题思路大同小异,都是利用异或的性质进行转化,st ...

  4. 2017 ACM-ICPC Asia Xi'an Problem A XOR(异或线性基 )

    题目链接  2017西安赛区 Problem A 题意  给定一个数列,和$q$个询问,每个询问中我们可以在区间$[L, R]$中选出一些数. 假设我们选出来的这个数列为$A[i_{1}]$, $A[ ...

  5. 【BZOJ-4269】再见Xor 高斯消元 + 线性基

    4269: 再见Xor Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 131  Solved: 81[Submit][Status][Discuss] ...

  6. BZOJ 4269: 再见Xor [高斯消元 线性基]

    4269: 再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 我太愚蠢了连数组开小了以及$2^{ ...

  7. 「洛谷3292」「BZOJ4568」「SCOI2016」幸运数字【倍增LCA+线性基+合并】

    [bzoj数据下载地址]不要谢我 先讲一下窝是怎么错的... \(MLE\)是因为数组开小了.. 看到异或和最大,那么就会想到用线性基. 如果不会线性基的可以参考一下我的学习笔记:「线性基」学习笔记a ...

  8. Codeforces1101G (Zero XOR Subset)-less 【线性基】【贪心】

    题目分析: 考虑到这是一个区间的异或问题,不妨求出前缀和,令$sum[i] = Xor_{j=1}^{i}a[j]$. 对于区间$[l,r]$的异或结果,等于$sum[r] \oplus sum[l- ...

  9. 【线性基合并 树链剖分】bzoj4568: [Scoi2016]幸运数字

    板子题 Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个 幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市 ...

随机推荐

  1. LoadRunner开发ftp协议接口之上传文件脚本

    Action() { //建立一个ftp对象 FTP ftp1=0; //建立FTP连接并登录 ftp_logon_ex(&ftp1,"ftpLogon", "U ...

  2. kafka 发送确认参数acks的几种模式

    1. acks=0 意味着生产者能够通过网络吧消息发送出去,那么就认为消息已成功写入Kafka 一定会丢失一些数据 2. acks=1 意味着首领在疏导消息并把它写到分区数据问津是会返回确认或者错误响 ...

  3. 精通Dubbo——Dubbo支持的协议的详解

    转: 精通Dubbo——Dubbo支持的协议的详解 2017年06月02日 22:26:57 孙_悟_空 阅读数:44500   Dubbo支持dubbo.rmi.hessian.http.webse ...

  4. Android sdk platform,sdk tools,sdk Build tools,sdk platform tools 的关系

    1. sdk platform 简单理解为系统版本 最新级别: 28:Android 9 27:Android 8.1 26:Android 8.0 25:Android 7.1 24:Android ...

  5. Hbase 元数据一致性检查(转)

    最近在学习HBase先关的知识,顺便做一下笔记,以加深知识的了解和掌握. Hbase常用工具 文件检测修复工具 hbase hbck -help 常用选项: -details 显示所有region检查 ...

  6. CMDB服务器管理系统【s5day88】:采集资产-文件配置(二)

    上节疑问: 1.老师我们已经写到global_settings里了,为什么还要写到__init__.py setting 这的作用是为了:整合起两个的组合global_settings和setting ...

  7. Linux shell脚本启动 停止 重启jar包

    最近做的微服务jar包想弄在持续集成中自动化部署,所以首先得有一个操作jar包的脚本 只需将jar文件的路径替换到APP_NAME的值就可以了,其他不用改 注意:window编辑的shell文件,通过 ...

  8. JGUI源码:Accordion折叠到侧边栏实现(6)

    折叠和非折叠效果如左右图所示 代码如下 //折叠 $.fn.jAccordionfold = function() { return this.each(function() { var obj = ...

  9. DUMP2 企业级电商项目

    正常设计数据库表,按照数据流向. ~~闭环核心业务 [1用户]登录 =>浏览[2分类]+浏览[3商品]=>加入[4购物车]=>结算[5订单]+[6收货地址]=>[7支付] [购 ...

  10. like 模糊查询

    select * from empwhere ename like '%O%' and ename like '%T%'--查询下员工姓名中有O和T的