翻译 | Improving Distributional Similarity with Lessons Learned from Word Embeddings

叶娜老师说:“读懂论文的最好方法是翻译它”。我认为这是很好的科研训练,更加适合一个陌生领域的探索。因为论文读不懂,我总结无非是因为这个领域不熟悉。如果是自己熟悉的领域,那么读起来肯定会比较顺畅。

原文

摘要

[1] Recent trends suggest that neural-network-inspired word embedding models outperform traditional count-based distributional models on word similarity and analogy detection tasks.

[2] We reveal that much of the performance gains of word embeddings are due to certain system design choices and hyper-parameter optimizations, rather than the embedding algorithms themselves.

[3] Furthermore, we show that these modifications can be transferred to traditional distributional models, yielding similar gains.

[4] In contrast to prior reports, we observe mostly local or insignificant performance differences between the methods, with no global advantage to any single approach over the others.

结论

[1] Recent embedding methods introduce a plethora of design choices beyond network architecture and optimization algorithms.

[2] We reveal that these seemingly minor variations can have a large impact on the success of word representation methods.

[3] By showing how to adapt and tune these hyper-parameters in traditional methods, we allow a proper comparison between representations, and challenge various claims of superiority from the word embedding literature.

(下启第二段)

[4] This study also exposes the need for more controlled-variable experiments, and extending the concept of “variable” from the obvious task, data, and method to the often ignored preprocessing steps and hyper-parameter settings.

[5] We also stress the need for transparent and reproducible experiments, and commend authors such as Mikolov, Pennington, and others for making their code publicly available.

[6] In this spirit, we make our code available as well.

译文

摘要

[1] 最近的趋势表明,神经网络启发的嵌入词模型在词语相似度和词语类比检测任务上优于传统的基于计数的分布式模型。

[2] 我们发现,词嵌入的性能提高很大程度上是由于特定系统设计选择和超参数优化,而不是词嵌入算法本身(带来的性能提升)。

[3] 此外,我们还表明,这些修改可以转移到传统的分布模型,从而产生类似的增益。

[4] 与之前的报告相比,我们观察到方法之间主要存在局部或微小的性能差异,与其他方法相比,没有任何整体优势。

结论

[1] 最近的嵌入方法引入了过剩的网络体系结构和优化算法之外的设计选择。

[2] 我们发现,这些看似微小的变化可能会对单词表达方法的效果产生很大的影响。

[3] 通过展示如何在传统方法中采纳以及调整这些超参数,我进行了在各种表示方法之间的适当比较,并从词嵌入文献中挑战各种主张。

[4] 这项研究还暴露了对更多可控变量实验的需求,并将“变量”的概念从明显的任务、数据和方法扩展到经常被忽略的预处理步骤和超参数设置。

[5] 我们还强调需要透明和可重复的实验,并赞扬 Mikolov,Pennington 等作者公开提供其代码。

[6] 本着这种精神,我们也提供了代码。

感悟

这篇文章是一项对比研究,旨在揭示基于神经网络的词表示学习方法所带来的效果提升,在于超参数的设置,而不是网络结构的改进。

翻译 | Improving Distributional Similarity with Lessons Learned from Word Embeddings的更多相关文章

  1. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  2. Lessons learned from manually classifying CIFAR-10

    Lessons learned from manually classifying CIFAR-10 Apr 27, 2011 CIFAR-10 Note, this post is from 201 ...

  3. Lessons Learned from Developing a Data Product

    Lessons Learned from Developing a Data Product For an assignment I was asked to develop a visual ‘da ...

  4. Elasticsearch Mantanence Lessons Learned Today

    Today I troubleshooted an Elasticsearch-cluster-down issue. Several lessons were learned: When many ...

  5. Lessons Learned 1(敏捷项目中的变更影响分析)

    问题/现象: 业务信息流转的某些环节,会向相关人员发送通知邮件,邮件中附带有链接,供相关人员进入察看或处理业务.客户要求邮件中的链接,需要进行限制,只有特定人员才能进入处理或察看.总管想了想,应道没问 ...

  6. Paper Reading - Show and Tell: Lessons learned from the 2015 MSCOCO Image Captioning Challenge

    Link of the Paper: https://arxiv.org/abs/1609.06647 A Correlative Paper: Show and Tell: A Neural Ima ...

  7. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  8. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  9. 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

随机推荐

  1. Sybase IQ 的基础

    Sybase IQ 的基础   Sybase IQ的一些基础总结: 1.IQ跟其它的关系型数据库相比,它的主要特征是:查询快.数据压缩比高.Load快,但是插入更新慢,不太适应数据老是变化,它是按列存 ...

  2. springBoot生成日志文件

    一.安装lombok 说明: 安装bomlok后model可以不用写get.set方法,slf4j日志直接使用log打印 1. Maven Repository中下载lombok.jar 2. 将lo ...

  3. React之ref

    作为响应式开发框架React,我们知道他是数据驱动的,但有时候避免不了还是得动用到DOM操作,这个时候我们就可以用到ref:用法如下: 然后这样做有个弊端,当一个 ul 下面的 li 是动态添加的时候 ...

  4. tarjan算法(强连通分量 + 强连通分量缩点 + 桥(割边) + 割点 + LCA)

    这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可. tarjan算法的功能很强大, 可以用来求解强连通分量, ...

  5. CentOS7、REHL7的firewalld防火墙使用简单说明

    title: CentOS7.REHL7的firewalld防火墙使用简单说明 categories: Linux tags: - Linux timezone: Asia/Shanghai date ...

  6. mysql储存过程入门学习

    转载至:https://www.yiibai.com/mysql/getting-started-with-mysql-stored-procedures.html 1.mysql储存过程的创建 DE ...

  7. php7.2连接Sqlserver2008 r2

    下载Sql Server PHP扩展 Microsoft Drivers for PHP for SQL Server https://github.com/Microsoft/msphpsql/re ...

  8. spring 初始化

    一.Spring 容器高层视图 Spring 启动时读取应用程序提供的Bean配置信息,并在Spring容器中生成一份相应的Bean配置注册表,然后根据这张注册表实例化Bean,装配号Bean之间的依 ...

  9. h5页面适配小结

    大概是去年的7月想写这个内容去加深自己的理解.现在终于回来补上这篇入门小结了. 1.问题描述 适配的目标:在不同尺寸的手机设备上,页面“相对性的达到合理的展示(自适应)”或者“保持统一效果的等比缩放( ...

  10. 使用Epplus生成Excel 图表

    1.  前言 这是我最近项目刚要的需求,然后在网上找了半天的教材  但是很不幸,有关于Epplus的介绍真的太少了,然后经过了我的不断研究然后不断的采坑,知道现在看到Excel都想吐的时候,终于成功的 ...