Codeforces 429D Tricky Function(平面最近点对)
题目链接 Tricky Function
$f(i, j) = (i - j)^{2} + (s[i] - s[j])^{2}$
把$(i, s[i])$塞到平面直角坐标系里,于是转化成了平面最近点对问题。
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 100010; struct Point{
LL x, y;
void scan(){ scanf("%lld%lld", &x, &y);}
} p[N], q[N]; int n;
LL c[N];
LL s; bool cmp_x(const Point &a, const Point &b){
return a.x < b.x;
}
bool cmp_y(const Point &a, const Point &b){
return a.y < b.y;
} LL dist(const Point &a, const Point &b){
return (a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y);
} LL work(int l, int r){
if (r == l) return 9e18;
if (r - l == 1) return dist(p[l], p[r]);
if (r - l == 2) return min(min(dist(p[l], p[r]), dist(p[l + 1], p[r])), dist(p[l], p[l + 1]));
int mid = (l + r) >> 1, cnt = 0;
LL ret = min(work(l, mid), work(mid + 1, r)); rep(i, l, r) if (p[i].x < p[mid].x + sqrt(ret) && p[i].x > p[mid].x - sqrt(ret)) q[++cnt] = p[i];
sort(q + 1, q + cnt + 1, cmp_y);
rep(i, 1, cnt - 1) rep(j, i + 1, cnt){
if ((q[j].y - q[i].y) * (q[j].y - q[i].y) > ret) break;
ret = min(ret, dist(q[i], q[j]));
} return ret;
} int main(){ scanf("%d", &n);
rep(i, 1, n) scanf("%lld", c + i);
rep(i, 1, n){
s += c[i];
p[i] = {i, s};
}
sort(p + 1, p + n + 1, cmp_x);
printf("%lld\n", work(1, n));
return 0; }
Codeforces 429D Tricky Function(平面最近点对)的更多相关文章
- Codeforces(429D - Tricky Function)近期点对问题
D. Tricky Function time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces 429D Tricky Function 近期点对
题目链接:点击打开链接 暴力出奇迹. 正解应该是近期点对.以i点为x轴,sum[i](前缀和)为y轴,求随意两点间的距离. 先来个科学的暴力代码: #include<stdio.h> #i ...
- Codeforces Round #245 (Div. 1) 429D - Tricky Function 最近点对
D. Tricky Function Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 codeforces.com/problemset/problem/42 ...
- codeforce 429D. Tricky Function (思维暴力过)
题目描述 Iahub and Sorin are the best competitive programmers in their town. However, they can't both qu ...
- 【Codeforces 429D】 Tricky Function
[题目链接] http://codeforces.com/problemset/problem/429/D [算法] 令Si = A1 + A2 + ... + Ai(A的前缀和) 则g(i,j) = ...
- 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点
平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...
- Codefoces 429 D. Tricky Function
裸的近期点对.... D. Tricky Function time limit per test 2 seconds memory limit per test 256 megabytes inpu ...
- HDU-4631 Sad Love Story 平面最近点对
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4631 数据是随机的,没有极端数据,所以可以分段考虑,最小值是一个单调不增的函数,然后每次分治算平面最近 ...
- HDU1007--Quoit Design(平面最近点对)
Problem Description Have you ever played quoit in a playground? Quoit is a game in which flat rings ...
随机推荐
- [Poj1273]Drainage Ditches(网络流)
Description 给图,求最大流 最大流模板题,这里用dinic Code #include <cstdio> #include <cstring> #include & ...
- Patrick and Shopping
Patrick and Shopping 今天 Patrick 等待着他的朋友 Spongebob 来他家玩.为了迎接 Spongebob,Patrick 需要去他家附近的两家商店 买一些吃的.他家 ...
- JavaScript 计时事件-setInterval()-clearInterval() -setTimeout()-clearTimeout()
(PS:JavaScript 一个设定的时间间隔之后来执行代码,我们称之为计时事件.) JavaScript 计时事件 通过使用 JavaScript,我们有能力做到在一个设定的时间间隔之后来执行代码 ...
- 线性回归 python小样例
线性回归优点:结果易于理解,计算上不复杂缺点:对非线性的数据拟合不好适用数据类型:数值型和标称型数据horse=0.0015*annualSalary-0.99*hoursListeningToPul ...
- 【转载】主成分分析法(PCA)
https://www.jisilu.cn/question/252942 进行维数约减(Dimensionality Reduction),目前最常用的算法是主成分分析法 (Principal Co ...
- Zookeeper CreateMode
通过CreateMode 可以设置在zookeeper中创建节点的类型,节点类型共有4种: EPHEMERAL:临时节点 EPHEMERAL_SEQUENTIAL:有序的临时节点 PERSISTENT ...
- 编译php 转
LAOGAO added 20140907: configure: error: mcrypt.h not found. Please reinstall libmcrypt.复制代码 代码如下:wg ...
- POJ 3104:Drying(二分)
题目大意:你有一台机器可以烘干衣物,现在有n个衣物需要烘干,每件衣服都有一个值表示含水量,烘干机一秒可以烘干k滴水,一件衣服不在烘干机上时会每秒自动蒸发一滴水,求最少用多少时间烘干所有衣服. 分析: ...
- spring项目启动报错BeanFactory not initialized or already closed
spring项目启动的时候报如下错误: java.lang.IllegalStateException: BeanFactory not initialized or already closed - ...
- 在子页面session过期无法跳转到父页面
当session过期后可以用过滤器来设置重定向页面 public class ActionFilter extends HttpServlet implements Filter { private ...