G. New Roads
                                                                   time limit per test: 2 seconds
                                                            memory limit per test:256 megabytes
                                                                      input:standard input
                                                                     output:standard output

There are n cities in Berland, each of them has a unique id — an integer from1 ton, the capital is the one with id1. Now there is a serious problem in Berland with roads — there are no roads.

That is why there was a decision to build n - 1 roads so that there will be exactly one simple path between each pair of cities.

In the construction plan t integers a1, a2, ..., at were stated, wheret equals to the distance from the capital to the most distant city, concerning new roads.ai equals the number of cities which should be at the distancei from the capital. The distance between two cities is the number of roads one has to pass on the way from one city to another.

Also, it was decided that among all the cities except the capital there should be exactlyk cities with exactly one road going from each of them. Such cities are dead-ends and can't be economically attractive. In calculation of these cities the capital is not taken into consideration regardless of the number of roads from it.

Your task is to offer a plan of road's construction which satisfies all the described conditions or to inform that it is impossible.

Input

The first line contains three positive numbers n,t andk (2 ≤ n ≤ 2·105,1 ≤ t, k < n) — the distance to the most distant city from the capital and the number of cities which should be dead-ends (the capital in this number is not taken into consideration).

The second line contains a sequence of t integersa1, a2, ..., at (1 ≤ ai < n), thei-th number is the number of cities which should be at the distancei from the capital. It is guaranteed that the sum of all the valuesai equalsn - 1.

Output

If it is impossible to built roads which satisfy all conditions, print -1.

Otherwise, in the first line print one integer n — the number of cities in Berland. In the each of the nextn - 1 line print two integers — the ids of cities that are connected by a road. Each road should be printed exactly once. You can print the roads and the cities connected by a road in any order.

If there are multiple answers, print any of them. Remember that the capital has id1.

Examples
Input
7 3 3
2 3 1
Output
7
1 3
2 1
2 6
2 4
7 4
3 5
Input
14 5 6
4 4 2 2 1
Output
14
3 1
1 4
11 6
1 2
10 13
6 10
10 12
14 12
8 4
5 1
3 7
2 6
5 9
Input
3 1 1
2
Output
-1

在构造树的时候,先把树的主链确定,再确定哪些节点为叶子节点(显然深度最大的那些点一定是叶子结点,且根节点一定不是叶子结点因为n≥2),哪些不是叶子节点。

当叶子节点数目不够时,考虑那些不一定是叶子节点的节点(即深度不是最大值并且不是树的主链的成员的节点),把他作为深度大于他们的结点的父亲即可。这样该结点就变成非叶子结点了。

当非叶子结点个数大于那些可以变成非叶子结点的个数时,无解。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i,n)                for(int i(0); i <  (n); ++i)
#define rep(i,a,b) for(int i(a); i <= (b); ++i)
#define PB push_back const int N = + ;
vector <int> v[N];
int fa[N], a[N], n, la, leaf, cnt, l; int main(){ scanf("%d%d%d", &n, &la, &leaf);
rep(i, , la) scanf("%d", a + i);a[] = ;
if ((a[la] > leaf) || (n - la < leaf) || (n < leaf)){ puts("-1"); return ;} int sum = ; rep(i, , la) sum += a[i];
if (sum != n){ puts("-1"); return ;}
cnt = ; rep(i, , la) rep(j, , a[i]) v[i].PB(++cnt); REP(i, a[]) fa[v[][i]] = ;
rep(i, , la) fa[v[i][]] = v[i - ][];
l = n - leaf - la; rep(i, , la){
rep(j, , a[i] - ) if (l && j <= a[i - ] - ) fa[v[i][j]] = v[i - ][j], --l;
else fa[v[i][j]] = v[i - ][];
} if (l) {puts("-1"); return ;} printf("%d\n", n);
rep(i, , n) printf("%d %d\n", fa[i], i); return ; }

Codeforces 746G New Roads (构造)的更多相关文章

  1. [刷题]Codeforces 746G - New Roads

    Description There are n cities in Berland, each of them has a unique id - an integer from 1 to n, th ...

  2. Codeforces 835 F. Roads in the Kingdom

    \(>Codeforces\space835 F. Roads in the Kingdom<\) 题目大意 : 给你一棵 \(n\) 个点构成的树基环树,你需要删掉一条环边,使其变成一颗 ...

  3. New Roads CodeForces - 746G (树,构造)

    大意:构造n结点树, 高度$i$的结点有$a_i$个, 且叶子有k个. 先确定主链, 然后贪心放其余节点. #include <iostream> #include <algorit ...

  4. Codeforces 746G(构造)

                                                                                                      G. ...

  5. Codeforces Round #386 (Div. 2)G. New Roads [构造][树]

    题目链接:G. New Roads 题意:给出n个结点,t层深度,每层有a[i]个结点,总共有k个叶子结点,构造一棵树. 分析: 考虑一颗树,如果满足每层深度上有a[i]结点,最多能有多少叶子结点 那 ...

  6. 【codeforces 746G】New Roads

    [题目链接]:http://codeforces.com/problemset/problem/746/G [题意] 给你3个数字n,t,k; 分别表示一棵树有n个点; 这棵树的深度t,以及叶子节点的 ...

  7. Codeforces 362D Fools and Foolproof Roads 构造题

    题目链接:点击打开链接 题意: 给定n个点 m条边的无向图 须要在图里添加p条边 使得图最后连通分量数为q 问是否可行,不可行输出NO 可行输出YES,并输出加入的p条边. set走起.. #incl ...

  8. Codeforces 711D Directed Roads - 组合数学

    ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it co ...

  9. Codeforces 1383D - Rearrange(构造)

    Codeforces 题面传送门 & 洛谷题面传送门 一道不算困难的构造,花了一节英语课把它搞出来了,题解简单写写吧( 考虑从大往小加数,显然第三个条件可以被翻译为,每次加入一个元素,如果它所 ...

随机推荐

  1. 海量数据处理算法—BitMap

    1. Bit Map算法简介 来自于<编程珠玑>.所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素.由于采用了Bit为单位来存储数据,因此在存储空 ...

  2. day38--MySQL基础二

    1.数据库连表 1.1, 一对多 使用外键做约束.注意:外键列的数据类型要一致. 命令的方式创建外键CREATE table part1( nid int not null auto_incremen ...

  3. android基础知识杂记

    Activity中获取视图组件对象:public View findViewById(@IdRes int id) 该方法以组件的资源ID为参数,返回一个视图对象View,需要强转成具体的视图类对象. ...

  4. 67、activity中调用fragment内部自定义的方法

    fragment: /** * author: Created by zzl on 15/11/19. */ @SuppressLint("validFragment") publ ...

  5. Windows核心编程小结2

    这一节看看内存管理相关的信息 首先看看虚拟内存 虚拟地址空间 32位系统  --- 4GB = 232 64 位系统  ---- 16EB = 264 虚拟内存表 当一个应用程序从硬盘加载到RAM时, ...

  6. 用html5文件api实现移动端图片上传&预览效果

    想要用h5在移动端实现图片上传&预览效果,首先要了解html5的文件api相关知识(所有api只列举本功能所需): 1.Blob对象  Blob表示原始二进制数据,Html5的file对象就继 ...

  7. Python+Selenium练习篇之6-利用class name定位元素

    有时候,我们在用firepath(不会的请点这里)查看元素的XPath信息,发现没有可以用来定位的id信息,这个时候我们就需要考虑用其他的可用的来定位元素.本文介绍如何通过元素节点中class nam ...

  8. git和github基础入门

    一.git: 1.安装配置git: 1.1从官网或者该网址处下载:https://pan.baidu.com/s/1kU5OCOB#list/path=%2Fpub%2Fgit 1.2安装,一路nex ...

  9. mvc-自定义Route

    public class CustomerRoute : RouteBase { //从路径中解析出controller.action以及其他参数,创建RouteData(其中包括HttpHandle ...

  10. Python面向对象之私有方法(4)

    类里面有很多成员修饰符,用来修饰各种属性 (1)私有属性,只有内部的方法可以访问 class Foo: xo = 'xo'#表明是公共的,内部外部都可以访问 __ox = '私有属性'#私有属性,只有 ...