一、传输层协议

从之前介绍的网络层协议来看,通信的两端是两台主机,IP 数据报首部就标明了这两台主机的 IP 地址。但是从传输层来看,是发送方主机中的一个进程与接收方主机中的一个进程在交换数据,因此,严格地讲,通信双方不是主机,而是主机中的进程

主机中常常有多个应用进程同时在与外部通信(比如你的浏览器和 QQ 在同时运行),下图中,A 主机的 AP1 进程在与 B 主机的 AP3 进程通信,同时主机 A 的 AP2 进程也在与 B 主机的 AP4 进程通信。

两个主机的传输层之间有一个灰色双向箭头,写着“传输层提供应用进程间的逻辑通信”。 逻辑通信:看起来是数据似乎是沿着双向箭头在传输层水平传输的,但实际上是沿图中的虚线经多个协议层次而传输。

TCP/IP 协议栈传输层有两个重要协议——UDP 和 TCP,不同的应用进程在传输层使用 TCP 或 UDP 之一:

这一节先介绍比较简单的 UDP,比较复杂的 TCP 将在下一节讨论。

二、端口

在第一节我们已经了解过端口的概念,端口的作用体现在传输层。

刚才的图中,AP1 与 AP3 的通信与 AP2 与 AP4 的通信可以使用同一个传输层协议来传输(TCP 或 UDP),根据 IP 地址或 MAC 地址都只能是把数据传到正确的主机,但具体需要传到哪一个进程,是通过端口来辨认的。比如同时使用浏览器和 QQ,浏览器占用 80 端口,而 QQ 占用 4000 端口,那么发送过来的 QQ 消息便会通过 4000 端口显示在 QQ 客户端,而不会错误地显示在浏览器上。

端口号有 0~65535 的编号,其中:

  • 编号 0~1023 为 系统端口号 ,这些端口号可以在网址 www.iana.org 查询到,它们被指派给了 TCP/IP 最重要的一些应用程序,以下是一些常见的系统端口号:
应用层协议: FTP TELNET SMTP DNS TFTP HTTP SNMP
系统端口号: 21 23 25 53 69 80 161
  • 编号 1024~49151 为 登记端口号 ,为没有系统端口号的应用程序使用,使用这类端口号必须在 IANA 按规定手续登记,以防止重复。

  • 编号 49152~65535 为 短暂端口号 ,是留给客户进程选择暂时使用的,使用结束后,这类端口号会被放开以供其它程序使用。

三、UDP 概述

UDP(User Datagram Protocol)用户数据报协议,它只在 IP 数据报服务之上增加了很少一点功能,它的主要特点有:

  • (1).UDP 是无连接的,发送数据之前不需要建立连接(而 TCP 需要),减少了开销和时延。

  • (2).UDP尽最大努力交付,不保证交付可靠性。

  • (3).UDP 是面向报文的,对于从网络层交付下来的 IP 数据报,只做很简单的封装(8 字节 UDP 报头),首部开销小。

  • (4).UDP 没有拥塞控制,出现网络拥塞时发送方也不会降低发送速率。这种特性对某些实时应用是很重要的,比如 IP 电话,视频会议等,它们允许拥塞时丢失一些数据,因为如果不抛弃这些数据,极可能造成时延的累积。

  • (5).UDP 支持一对一、一对多、多对一和多对多的交互通信。

从应用层到传输层,再到网络层的各层次封装:

四、UDP 报文

UDP 数据报可分为两部分:UDP 报头和数据部分。其中数据部分是应用层交付下来的数据。UDP 报头总共 8 字节,而这 8 字节又分为 4 个字段:

  • (1)源端口 2 字节 在对方需要回信时可用,不需要时可以全 0;

  • (2)目的端口 2 字节 必须,也是最重要的字段;

  • (3)长度 2 字节 长度值包括报头和数据部分;

  • (4)校验和 2 字节 用于检验 UDP 数据报在传输过程中是否有出错,有错就丢弃。

五、tcpdump 抓取 UDP 报文

现在我们动手实践,尝试抓取一个 UDP 数据报,并解读其内容。

我们需要一个小程序,用于向 指定 IP 地址指定端口 发送一个 指定内容 的 UDP 数据报,这个程序已经编写好,依次输入以下命令,使用 github 把它下载下来,并编译:

cd Desktop

git clone https://github.com/shiyanlou/tcp_ip_5

cd tcp_ip_5

gcc -o test test.c

这个 C 程序会向 IP 地址 192.168.1.17777 端口 发送一条 "hello" 消息。你可以用编辑器修改程序,向不同的 IP 不同的 IP 发送不同的内容。

编译完成后先别运行,我们还需要使用一个知名的抓包工具 tcpdump ,依次输入以下命令安装,并运行 tcpdump:

sudo apt-get update
sudo apt-get install tcpdump
sudo tcpdump -vvv -X udp port 7777

现在最小化当前终端,另开启一个终端,输入以下命令运行刚才编译好的 C 程序 test:

cd Desktop/tcp_ip_5

./test

test 程序运行结束,返回刚才运行 tcpdump 的终端查看抓包结果:

六、作业

1、使用 tcpdump 抓取 UDP 数据报,解读报文,并截图。

2、修改 C 程序,向不同的 IP,不同的端口发送不同的内容,截图抓包结果。

传输层:UDP 协议的更多相关文章

  1. OSI模型第四层传输层--UDP协议

    1.udp协议 UDP是OSI参考模型中一种无连接的传输层协议,它主要用于不要求分组顺序到达的传输中,分组传输顺序的检查与排序由应用层完成[2]  ,提供面向事务的简单不可靠信息传送服务.UDP 协议 ...

  2. 计算机网络之传输层UDP协议

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105453096 学习课程:<2019王道考研计算机网络> 学习目的 ...

  3. (传输层)UDP协议

    目录 数据单位特点具体实现要求UDP首部格式发送UDP请求的客户端图释 数据单位 UDP 传送的数据单位协议是 UDP 报文或用户数据报 特点 UDP 是无连接的,即发送数据之前不需要建立连接 UDP ...

  4. TCP/IP五层模型-传输层-UDP协议

    ​1.定义:UDP:是非面向连接.不可靠的用户数据包协议. 2.应用场景:适合对数据完整性要求不高,但对延迟很敏感,比如即时通信(语音视频聊天等). 3.UDP报文格式: 4.用UDP传输数据的应用层 ...

  5. (传输层)TCP协议

    目录 首部格式数据单位特定注意自动重传请求ARQ具体实现发送缓存接收缓存滑动窗口确认丢失和确认迟到超时重传时间选择报文段的发送时机运输连接发送TCP请求客户端拥塞处理相关概念避免拥塞具体实现TCP 的 ...

  6. 传输层TCP协议

    目录 首部格式数据单位特定注意自动重传请求ARQ具体实现发送缓存接收缓存滑动窗口确认丢失和确认迟到超时重传时间选择报文段的发送时机运输连接发送TCP请求客户端拥塞处理相关概念避免拥塞具体实现TCP 的 ...

  7. 我们检测到您的浏览器不兼容传输层安全协议 (TLS) 1.1 或更高版本,此协议在 Internet 上用于确保您通信的安全性。

    早上使用.Net WebClient类采集亚马逊数据,返回http 400 Bad Request错误,内容里面有“我们检测到您的浏览器不兼容传输层安全协议 (TLS) 1.1 或更高版本,此协议在 ...

  8. [转帖]传输层安全协议TLS 1.3 RFC 8446使互联网更快、更安全

    传输层安全协议TLS 1.3 RFC 8446使互联网更快.更安全 2018-08-12 11:38:19作者:LINUX人稿源:开源社区 https://ywnz.com/linuxyffq/261 ...

  9. 传输层-UDP

    传输层构建在网络层之上,传输层提供端口到端口之间的通讯. 传输层通过端口号来标识一个端口,不同于网卡,端口是逻辑上的概念.传输层的端口为16个比特(bit)长度,即最多能表示65 536个端口,端口号 ...

  10. OSI模型第四层传输层--TCP协议

    1.传输层2个协议tcp和udp 2.tcp的可靠性(挂号信). 面向链接的:类似寄挂号信,对方收到了并且能够确认.所以也是可靠的传输. 最大报文传输:两端可以协商传输报文大小.(协商一个报文的大小) ...

随机推荐

  1. python深浅拷贝以及数据在内存中储存方法

    要搞懂深浅拷贝,首先要明白数据在内存里的储存方法. 一个变量的储存,首先是变量名加上储存内容的ID,通过ID去找到变量名所对应的内容, 当我们对数据进行赋值时,其实是把内容的整体地址赋给别的变量名(相 ...

  2. 优化脚本性能 Optimizing Script Performance

    This page gives some general hints for improving script performance on iOS. 此页面提供了一些一般的技巧,提高了在iOS上的脚 ...

  3. java 数据库连接 驱动相关参数

    mysql: driverClass=com.mysql.jdbc.Driver connectionURL=jdbc:mysql://localhost:3306/shiro userId=root ...

  4. 【bzoj4810】[Ynoi2017]由乃的玉米田 莫队算法+STL-bitset

    题目描述 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一个序列a,长度为n ...

  5. 【bzoj1266】[AHOI2006]上学路线route 最短路+最小割

    题目描述 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:“很可能我们在 ...

  6. [SPOJ839]Optimal Marks

    [SPOJ839]Optimal Marks 试题描述 You are given an undirected graph \(G(V, E)\). Each vertex has a mark wh ...

  7. Python基础教程笔记 第二章

    本章的名字虽然叫列表和元组,但是本章讲的最多的是列表,元祖指讲了很少的一部分.因为元组和列表很多方面都是一样的. 列表和元组的区别:列表可以被修改,元祖不可以被修改. python包含的6种内建序列: ...

  8. [AGC016B] Colorful Hats (结论)

    Description 有n个人,每个人都戴着一顶帽子.当然,帽子有不同的颜色. 现在,每个人都告诉你,他看到的所有其他人的帽子共有多少种颜色,请问你有没有符合所有人的描述的情况. Input 第一行 ...

  9. 简析JVM GC的根搜索算法

    根搜索算法的基本思路是通过一系列的“GC Roots”的对象作为起始点,从这些节点开始往下搜索,搜索的走过的路径称为引用链,当一个对象到“GC Roots”没有引用链可达时(也就是用图论的话说就是从G ...

  10. BZOJ 2728: [HNOI2012]与非

    2728: [HNOI2012]与非 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 786  Solved: 371[Submit][Status][ ...