MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数
这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py
与之前的MINST手写数字识别全连接网络相比,只是本实例使用antirectifier替换ReLU激活函数.
'''The example demonstrates how to write custom layers for Keras.
# Keras自定义层编写示范 We build a custom activation layer called 'Antirectifier',
建立了一个自定义的激活 'Antirectifier'(反校正) which modifies the shape of the tensor that passes through it.
它修改通过它的张量的形状。 We need to specify two methods: `compute_output_shape` and `call`.
需要指定两种方法: `compute_output_shape` and `call`. Note that the same result can also be achieved via a Lambda layer.
注意,同样的结果也可以通过Lambda层来实现 Because our custom layer is written with primitives from the Keras
自定义层是用keras底层编写的, backend (`K`), our code can run both on TensorFlow and Theano.
代码可基于TensorFlow and Theano框架运行
''' from __future__ import print_function
import keras
from keras.models import Sequential
from keras import layers
from keras.datasets import mnist
from keras import backend as K class Antirectifier(layers.Layer): '''This is the combination of a sample-wise
L2 normalization with the concatenation of the
positive part of the input with the negative part
of the input. The result is a tensor of samples that are
twice as large as the input samples.
这是示例性的L2归一化与输入的正样本与输入的负样本的级联的组合。结果张量样本是输入样本的两倍大。 It can be used in place of a ReLU.
可以使用RelU(Rectified Linear Unit,线性整流函数, 激活函数)替换 # Input shape
输入形状
2D tensor of shape (samples, n)
形状的2维张量 # Output shape
输出形状
2D tensor of shape (samples, 2*n)
形状的2维张量 # Theoretical justification
理论证明
When applying ReLU, assuming that the distribution
of the previous output is approximately centered around 0.,
使用ReLU时,假设前一个输出分布的以0中心分布 you are discarding half of your input. This is inefficient.
放弃了一半的输入。这是低效的。 Antirectifier allows to return all-positive outputs like ReLU,
without discarding any data.
反校正返回了所有正样本输出,像ReLU一样,没有丢弃数据。 Tests on MNIST show that Antirectifier allows to train networks
with twice less parameters yet with comparable
classification accuracy as an equivalent ReLU-based network.
基于MINIST(数据集)训练,展示反校正训练网络和同类ReLU-based网络相比,使用少于2倍的参数参数,但是实现了类似的分类准确度。
''' def compute_output_shape(self, input_shape):
shape = list(input_shape)
assert len(shape) == 2 # only valid for 2D tensors
shape[-1] *= 2
return tuple(shape) def call(self, inputs):
inputs -= K.mean(inputs, axis=1, keepdims=True)
inputs = K.l2_normalize(inputs, axis=1)
pos = K.relu(inputs)
neg = K.relu(-inputs)
return K.concatenate([pos, neg], axis=1) # global parameters
# 全局变量
batch_size = 128
num_classes = 10
epochs = 40 # the data, shuffled and split between train and test sets
# 筛选(数据顺序打乱)、划分训练集和测试集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices
# 类别向量转为多分类矩阵
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes) # build the model
# 建立模型
model = Sequential()
model.add(layers.Dense(256, input_shape=(784,)))
model.add(Antirectifier())
model.add(layers.Dropout(0.1))
model.add(layers.Dense(256))
model.add(Antirectifier())
model.add(layers.Dropout(0.1))
model.add(layers.Dense(num_classes))
model.add(layers.Activation('softmax')) # compile the model
# 编译模型
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy']) # train the model
# 训练模型
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test)) # next, compare with an equivalent network
# with2x bigger Dense layers and ReLU
# 下一步,使用同结构网络比较,该网络有2倍打的全连接层和ReLU激活函数
执行结果:
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/4
60000/60000 [==============================] - 4s 62us/step - loss: 0.6030 - acc: 0.9131 - val_loss: 0.1637 - val_acc: 0.9565
Epoch 2/4
60000/60000 [==============================] - 3s 58us/step - loss: 0.1264 - acc: 0.9652 - val_loss: 0.0910 - val_acc: 0.9730
Epoch 3/4
60000/60000 [==============================] - 3s 57us/step - loss: 0.0822 - acc: 0.9762 - val_loss: 0.0836 - val_acc: 0.9757
Epoch 4/4
60000/60000 [==============================] - 3s 57us/step - loss: 0.0638 - acc: 0.9810 - val_loss: 0.0762 - val_acc: 0.9780
<keras.callbacks.History at 0x7f355fba6c88>
评估模型:
score = model.evaluate(x_test, y_test,
verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])
评估结果:
10000/10000 [==============================] - 1s 59us/step
Test score: 0.07624727148264647
Test accuracy: 0.978
参考链接:
1、https://github.com/keras-team/keras/blob/master/examples/antirectifier.py
2、https://blog.csdn.net/wyx100/article/details/80678735
MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数的更多相关文章
- MINST手写数字识别(一)—— 全连接网络
这是一个简单快速入门教程——用Keras搭建神经网络实现手写数字识别,它大部分基于Keras的源代码示例 minst_mlp.py. 1.安装依赖库 首先,你需要安装最近版本的Python,再加上一些 ...
- MINST手写数字识别(二)—— 卷积神经网络(CNN)
今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期.大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步. 所以,今天就来带大家写 ...
- 【TensorFlow-windows】(三) 多层感知器进行手写数字识别(mnist)
主要内容: 1.基于多层感知器的mnist手写数字识别(代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...
- 【PaddlePaddle系列】手写数字识别
最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛.百度声称PaddlePaddle是一个“易学.易用”的开源深度学习框架,然而网上的资料少之又少.虽然百度很用心地提供 ...
- C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写 ...
- CNN 手写数字识别
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- 机器学习(二)-kNN手写数字识别
一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大 ...
- 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...
随机推荐
- 3-2if条件结构
不同条件做不同的操作.例如满100就减去20 条件结构 package com.imooc.operator; public class ConditionDemo1 { public static ...
- UVa 1641 ASCII Area (计算几何,水题)
题意:给定一个矩阵,里面有一个多边形,求多边形的面积. 析:因为是在格子里,并且这个多边形是很规则的,所以所有格子不是全属于多边形就是全不属于,或者一半,并且我们可以根据"/"和“ ...
- [Xcode 实际操作]一、博主领进门-(12)代码重构
目录:[Swift]Xcode实际操作 本文将演示如何重构代码. 在项目导航区,打开视图控制器的代码文件[ViewController.swift] [快速更改同名变量或常量] 在代码编辑区域,点击需 ...
- [Xcode 实际操作]九、实用进阶-(30)为IAP(支付方式)内购项目添加测试账号,测试内购功能
目录:[Swift]Xcode实际操作 本文将演示如何添加测试账号,以方便对内购功能进行测试. IAP,即in-App Purchase ,是一种智能移动终端应用程序付费的模式, 在苹果(Apple) ...
- 初次接触Service笔记
Service是后台的运行的小程序,分两种一种是StarService()另外一种是bindService(),这种可调用Service中的方法和返回结果等操作而StarService不能 他的生命周 ...
- js截取文件名不带后缀
利用正则表达式是匹配后缀名 一般文件后缀都为.xxx,也就是说从尾部匹配的话首先是字母,接着应该有一个. 那么我们就开始写正则表达式 利用在线工具 方便我们编写边测试 一般都是小写字母,所以我们用[a ...
- PostgreSQL-2-用户权限管理
1.创建与删除用户 CREATE ROLE rolename; 方法1,创建角色 CREATE USER username; 方法2,创建用户 CREATE USER指令创建的用户默认是有登录权限的, ...
- python中的计时器:timeit模块
python中的计时器:timeit模块 (1) timeit - 通常在一段程序的前后都用上time.time()然后进行相减就可以得到一段程序的运行时间,不过python提供了更强大的计时库:ti ...
- [软件工程基础]2017.11.04 第八次 Scrum 会议
具体事项 项目交接燃尽图 每人工作内容 成员 已完成的工作 计划完成的工作 工作中遇到的困难 游心 #10 搭建可用的开发测试环境:#9 阅读分析 PhyLab 后端代码与文档:#8 掌握 Larav ...
- LIS的简单应用:UVA-437
上一次紫芝详细地介绍了动态规划中的经典问题LIS,今天我们抽出一个类似思想的简单题目进行实践练习. The Tower of Babylon(巴比伦塔) Perhaps you have heard ...