题目链接:

Clone

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
 
After eating food from Chernobyl, DRD got a super power: he could clone himself right now! He used this power for several times. He found out that this power was not as perfect as he wanted. For example, some of the cloned objects were tall, while some were short; some of them were fat, and some were thin.

More evidence showed that for two clones A and B, if A was no worse than B in all fields, then B could not survive. More specifically, DRD used a vector v to represent each of his clones. The vector v has n dimensions, representing a clone having N abilities. For the i-th dimension, v[i] is an integer between 0 and T[i], where 0 is the worst and T[i] is the best. For two clones A and B, whose corresponding vectors were p and q, if for 1 <= i <= N, p[i] >= q[i], then B could not survive.

Now, as DRD's friend, ATM wants to know how many clones can survive at most.

 
Input
 
The first line contains an integer T, denoting the number of the test cases.

For each test case: The first line contains 1 integer N, 1 <= N <= 2000. The second line contains N integers indicating T[1], T[2], ..., T[N]. It guarantees that the sum of T[i] in each test case is no more than 2000 and 1 <= T[i].

 
Output
 
For each test case, output an integer representing the answer MOD 10^9 + 7.
 
Sample Input
 
2
1
5
2
8 6
 
Sample Output
 
1
7
 
题意:
 
 
 
思路:
 
dp[i][j]表示前j个人和为i的方案数;
dp[i+k][j]=∑dp[i][j-1](0<=k<=a[j]);
结果为dp[sum/2][n],真是谜一样的答案;
sum=∑t[i];
AC代码:
 
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+;
typedef long long ll;
const ll mod=1e9+;
int t,n,a[];
ll dp[][];
int main()
{
scanf("%d",&t);
while(t--)
{
int sum=,ans=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
ans+=a[i];
}
memset(dp,,sizeof(dp));
for(int i=;i<=a[];i++)
{
dp[i][]=;
}
for(int i=;i<=n;i++)
{
sum+=a[i];
for(int j=;j<=a[i];j++)
{
for(int k=;k<=sum;k++)
{
dp[k+j][i]+=dp[k][i-]%mod;
dp[k+j][i]%=mod;
}
}
}
printf("%lld\n",dp[ans/][n]);
}
return ;
}
 

hdu-5000 Clone(dp)的更多相关文章

  1. HDU 5000 Clone(离散数学+DP)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description After eating food from Chernobyl, DRD got a super power: he could clone himself ...

  2. hdu 5000 Clone

    dp,用dp[i][j],表示和为i的前j个维度的种类.其中arr[i],表示第i维的最大值. 则\begin{equation} dp[i][j] = \sum_{0 \leq k \leq \mi ...

  3. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  4. hdu 4507 数位dp(求和,求平方和)

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...

  5. hdu 3709 数字dp(小思)

    http://acm.hdu.edu.cn/showproblem.php?pid=3709 Problem Description A balanced number is a non-negati ...

  6. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  10. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

随机推荐

  1. 【spring cloud】spring cloud服务发现注解之@EnableDiscoveryClient与@EnableEurekaClient

    spring cloud服务发现注解之@EnableDiscoveryClient与@EnableEurekaClient的区别

  2. mac mysql忘记密码解决办法

    http://www.jb51.net/article/87580.htm http://blog.csdn.net/soft2buy/article/details/50223373

  3. How to create a freehand tool

    http://forums.esri.com/Thread.asp?c=159&f=1707&t=283694&mc=1 http://blog.sina.com.cn/s/b ...

  4. 谈一次Linux的木马攻击数据爆满造成的Mysql无法启动

    起初以为是mysql它们之间的扩展没有开启! 后来发现,木马的确使它初始化了,最开始没有用图形化界面 而后,修改并且开启所有pdo扩展 VIM基本操作(除了插入,其它的命令前提是按ESC): 插入: ...

  5. Android自己定义View的实现方法

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/17357967 不知不觉中,带你一步步深入了解View系列的文章已经写到第四篇了.回 ...

  6. VueJS数据绑定文本显示:{{message}}

    HTML <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <titl ...

  7. kubectl技巧之通过go-template截取属性

    系列目录 在使用kubectl get获取资源信息的时候,可以通过-o(--output简写形式)指定信息输出的格式,如果指定的是yaml或者json输出的是资源的完整信息,实际工作中,输出内容过少则 ...

  8. canvas转盘抽奖的实现(二)

    本篇是<canvas转盘抽奖的实现(一)>的另一种实现方法,主要通过css3的transform以及transition过渡来实现.     // ' + r + '等奖'; } draw ...

  9. python发送post请求上传文件,无法解析上传的文件

    前言 近日,在做接口测试时遇到一个奇葩的问题. 使用post请求直接通过接口上传文件,无法识别文件. 遇到的问题 以下是抓包得到的信息: 以上请求是通过Postman直接发送请求的. 在这里可以看到消 ...

  10. 五、WEB框架基础(1)

    框架与架构 Python语言有很多web框架,主要是四个,企业级框架Django,高并发处理框架Tornado,快速开发框架Flask,自定义协议框架Twisted. 全栈网络框架封装了网络通信/线程 ...