题目链接:

Clone

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 65536/65536 K (Java/Others)

Problem Description
 
After eating food from Chernobyl, DRD got a super power: he could clone himself right now! He used this power for several times. He found out that this power was not as perfect as he wanted. For example, some of the cloned objects were tall, while some were short; some of them were fat, and some were thin.

More evidence showed that for two clones A and B, if A was no worse than B in all fields, then B could not survive. More specifically, DRD used a vector v to represent each of his clones. The vector v has n dimensions, representing a clone having N abilities. For the i-th dimension, v[i] is an integer between 0 and T[i], where 0 is the worst and T[i] is the best. For two clones A and B, whose corresponding vectors were p and q, if for 1 <= i <= N, p[i] >= q[i], then B could not survive.

Now, as DRD's friend, ATM wants to know how many clones can survive at most.

 
Input
 
The first line contains an integer T, denoting the number of the test cases.

For each test case: The first line contains 1 integer N, 1 <= N <= 2000. The second line contains N integers indicating T[1], T[2], ..., T[N]. It guarantees that the sum of T[i] in each test case is no more than 2000 and 1 <= T[i].

 
Output
 
For each test case, output an integer representing the answer MOD 10^9 + 7.
 
Sample Input
 
2
1
5
2
8 6
 
Sample Output
 
1
7
 
题意:
 
 
 
思路:
 
dp[i][j]表示前j个人和为i的方案数;
dp[i+k][j]=∑dp[i][j-1](0<=k<=a[j]);
结果为dp[sum/2][n],真是谜一样的答案;
sum=∑t[i];
AC代码:
 
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+;
typedef long long ll;
const ll mod=1e9+;
int t,n,a[];
ll dp[][];
int main()
{
scanf("%d",&t);
while(t--)
{
int sum=,ans=;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
ans+=a[i];
}
memset(dp,,sizeof(dp));
for(int i=;i<=a[];i++)
{
dp[i][]=;
}
for(int i=;i<=n;i++)
{
sum+=a[i];
for(int j=;j<=a[i];j++)
{
for(int k=;k<=sum;k++)
{
dp[k+j][i]+=dp[k][i-]%mod;
dp[k+j][i]%=mod;
}
}
}
printf("%lld\n",dp[ans/][n]);
}
return ;
}
 

hdu-5000 Clone(dp)的更多相关文章

  1. HDU 5000 Clone(离散数学+DP)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description After eating food from Chernobyl, DRD got a super power: he could clone himself ...

  2. hdu 5000 Clone

    dp,用dp[i][j],表示和为i的前j个维度的种类.其中arr[i],表示第i维的最大值. 则\begin{equation} dp[i][j] = \sum_{0 \leq k \leq \mi ...

  3. hdu 4123 树形DP+RMQ

    http://acm.hdu.edu.cn/showproblem.php? pid=4123 Problem Description Bob wants to hold a race to enco ...

  4. hdu 4507 数位dp(求和,求平方和)

    http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...

  5. hdu 3709 数字dp(小思)

    http://acm.hdu.edu.cn/showproblem.php?pid=3709 Problem Description A balanced number is a non-negati ...

  6. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  7. hdu 4283 区间dp

    You Are the One Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  8. HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化

    HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...

  9. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  10. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

随机推荐

  1. Android 实现Activity后台运行

    有时需要让activity在后台运行,具体实现方法如下: 在AndroidManifest.xml中,activity属性中增加: android:theme="@style/Backgro ...

  2. 一天时间用OpenFire打造自己的IM聊天工具

    Openfire采用Java开发,开源的实时协作(RTC)服务器基于XMPP(Jabber)协议.Openfire安装和使用都非常简单,并利用Web进行管理.单台服务器可支持上万并发用户. 好友界面 ...

  3. py3处理数据库

    处理mysql使用 pymysql模块 import pymysql conn=pymysql.connect(host='127.0.0.1',port=3306,user='root',passw ...

  4. Win7如何自定义鼠标右键菜单 添加新建PowerPoint文档

    鼠标右键添加新建PowerPoint文档.reg Windows Registry Editor Version 5.00 [HKEY_CLASSES_ROOT\.ppt] "Content ...

  5. H2数据库集群

    H2数据库集群 1. H2数据库简单介绍 1.1 H2数据库优势 经常使用的开源数据库:H2,Derby,HSQLDB.MySQL,PostgreSQL. 当中H2,HSQLDB相似,十分适合作为嵌入 ...

  6. Eoeclient源代码分析---SlidingMenu的使用

    Eoeclient源代码分析及代码凝视 使用滑动菜单SlidingMenu,单击滑动菜单的不同选项,能够通过ViewPager和PagerIndicator显示相应的数据内容. 0  BaseSlid ...

  7. jquery easyui 全部图标

    所有的图标在 jquery-easyui-1.2.6\themes\icons 目录下, 在icon.css定义的如何引用 jquery-easyui-1.2.6/themes/icon.css .i ...

  8. python3短信接口使用

    import http.client from urllib import parse host = "106.ihuyi.com" sms_send_uri = "/w ...

  9. 利用CH341A编程器刷新BIOS,恢复BIOS,妈妈再也不用担心BIOS刷坏了

    前几天,修电脑主析就捣鼓刷BIOS,结果刷完黑屏开不了机,立刻意识到完了,BIOS刷错了.就从网上查资料,各种方法试了个遍,什么用处都没有.终于功夫不负有心人,找到了编码器,知道了怎么用.下面看看具体 ...

  10. vue directive demo

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...