题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771

令多项式的系数是方案数,次数是值;

设 a(x) 为一个物品的多项式,即 a[w[i]].x = 1,b(x) 为两个物品重复的多项式,即 b[w[i]*2].x = 1,c(x) 为三个物品重复的多项式,即 c[w[i]*3].x = 1;

选恰好三个有序物品的答案就是 a(x)^3 - 3*a(x)*b(x)^2 + c(x),因为要无序,所以再除以 3! = 6;

选恰好两个有序物品的答案就是 a(x)^2 - b(x),无序再除以 2! = 2;

再加上选一个物品的答案,也就是 c(x);

多项式也可以算乘方。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<);
db const Pi=acos(-1.0);
int n,rev[xn],lim,l,p[xn],p2[xn];
db ans[xn];
struct com{db x,y;}a[xn],b[xn],c[xn],t[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x};}
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
int main()
{
n=rd(); int mx=;
for(int i=,x;i<=n;i++)
{
x=rd(); a[x].x=b[x+x].x=c[x+x+x].x=;
mx=max(mx,x); p[x]=p2[x+x]=;
}
lim=;
while(lim<=*mx)lim<<=,l++;
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
fft(a,); fft(b,);
for(int i=;i<lim;i++)t[i]=a[i]*a[i]*a[i];
fft(t,-);
for(int i=;i<lim;i++)ans[i]=t[i].x/lim;
for(int i=;i<lim;i++)t[i]=a[i]*b[i];
fft(t,-);
for(int i=;i<lim;i++)ans[i]=(ans[i]-*(t[i].x/lim)+c[i].x)/; for(int i=;i<lim;i++)t[i]=a[i]*a[i];
fft(t,-);
for(int i=;i<lim;i++)ans[i]=(ans[i]+(t[i].x/lim-p2[i])/);
for(int i=;i<lim;i++)ans[i]+=p[i];
for(int i=;i<lim;i++)
{
if((int)(ans[i]+0.5)==)continue;
printf("%d %d\n",i,(int)(ans[i]+0.5));
}
return ;
}

bzoj 3771 Triple —— FFT的更多相关文章

  1. [BZOJ 3771] Triple(FFT+容斥原理+生成函数)

    [BZOJ 3771] Triple(FFT+生成函数) 题面 给出 n个物品,价值为别为\(w_i\)且各不相同,现在可以取1个.2个或3个,问每种价值和有几种情况? 分析 这种计数问题容易想到生成 ...

  2. bzoj 3771 Triple FFT 生成函数+容斥

    Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 847  Solved: 482[Submit][Status][Discuss] Desc ...

  3. bzoj 3771 Triple——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3771 把方案作为系数.值作为指数,两项相乘就是系数相乘.指数相加,符合意义. 考虑去重.先自 ...

  4. BZOJ 3771 Triple FFT+容斥原理

    解析: 这东西其实就是指数型母函数? 所以刚开始读入的值我们都把它前面的系数置为1. 然后其实就是个多项式乘法了. 最大范围显然是读入的值中的最大值乘三,对于本题的话是12W? 用FFT优化的话,达到 ...

  5. BZOJ 3771 Triple ——FFT

    直接暴力卷积+统计就可以了. 去重比较复杂. 其实也不复杂,抄吧! 反正AC了. #include <map> #include <cmath> #include <qu ...

  6. BZOJ 3771: Triple(FFT+容斥)

    题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...

  7. 【BZOJ 3771】 3771: Triple (FFT+容斥)

    3771: Triple Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 547  Solved: 307 Description 我们讲一个悲伤的故事. ...

  8. BZOJ.3771.Triple(母函数 FFT 容斥)

    题目链接 \(Description\) 有\(n\)个物品(斧头),每个物品价值不同且只有一件,问取出一件.两件.三件物品,所有可能得到的价值和及其方案数.\((a,b),(b,a)\)算作一种方案 ...

  9. BZOJ 3771: Triple(生成函数 FFT)

    Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 911  Solved: 528[Submit][Status][Discuss] Description ...

随机推荐

  1. 转: WebRTC音视频引擎研究(1)--整体架构分析

    转自: http://blog.csdn.net/temotemo/article/details/7530504   目录(?)[+]   WebRTC技术交流群:234795279 原文地址:ht ...

  2. 文件系统之-JAVA Sftp远程操作:

    转载:http://blog.csdn.net/lee272616/article/details/52789018 java远程操作文件服务器(linux),使用sftp协议版本会持续更新,当前版本 ...

  3. C 标准库 - <limits.h>

    C 标准库 - <limits.h> 简介 limits.h 头文件决定了各种变量类型的各种属性.定义在该头文件中的宏限制了各种变量类型(比如 char.int 和 long)的值. 这些 ...

  4. 用ELK 实时处理搜索日志

    转载请标明原处:http://blog.csdn.net/hu948162999/article/details/50563110 本来这块业务 是放到SolrCloud上去的 , 然后 採用solr ...

  5. 安装odoo 9实录

    安装Ubuntu,省略 下载 odoo源码 使用 git 下载源码 mkdir /opt/openerp/server cd /opt/openerp/server git clone https:/ ...

  6. Tessellation (曲面细分) Displacement Mapping (贴图置换)

    DirectX 11 Tessellation (曲面细分)-什么是 Tessellation (曲面细分) ? 它为什么可以起到如此关键的数据? 随着近期人们对 DirectX 11 的议论纷纷,你 ...

  7. java模拟而一个电话本操作

    哈哈.大家平时都在使用电话本.以下使用java来模拟而一个简单的电话本吧... 首先给出联系人的抽象类 package net.itaem.po; /** * * 电话人的信息 * */ public ...

  8. Spring Boot实现STOMP协议的WebSocket

    关注公众号:锅外的大佬 每日推送国外优秀的技术翻译文章,励志帮助国内的开发者更好地成长! WebSocket协议是应用程序处理实时消息的方法之一.最常见的替代方案是长轮询(long polling)和 ...

  9. checkAll全选的一个小例子

    function checkAll(tag,flag) { //得到所有check var checkboxs = $(tag).closest("table").find(&qu ...

  10. Cena使用

    打开cena,在工具-选项中,修改G++和GCC的编译命令.格式:[g++目录]g++.exe %s.cpp -o %s.exe [编译选项]例如以下命令使用刚安装的mingw4.8.1 g++编译, ...