题目链接:http://bestcoder.hdu.edu.cn/contests/contest_showproblem.php?pid=1002&cid=530

(格式有一点点问题,直接粘下来吧)

题目意思:给出 n 和 k,问能否构造 k-1个不同的数使得这 k-1 个数(每个数都为正整数)的和等于一个数的平方,且 k 个数(都为正整数)的和等于 n。

错了差不多十多次,终于要看别人思路了.......

为了将问题简化,且保证 k-1 个数都是不同的,我们从自然数1,2,...,k-2 构造出前 k-2 个数,看清楚,不是 k-1 而是 k-2。因为最后第 k-1 个数有待斟酌!!!

设 square 为 k-1 个数之和,也就是等于的某个数的平方啦,remain 就是 n - square了。

先排除两种特殊情况:

(1) remain = 0 (不符合正整数的要求)或者 (k-1) * k /2 > square(因为是从1开始构造的,最小的square 都需要大于等于 (k-1)* k /2(1+2+3+...+k-1) ,避免无谓的计算

  (2)如果square = 1 并且 remain = 1 ,那么无解。这就是Sample 中的2 2了。

然后开始构造k-2个数。构造的时候,如果遇到remain(假如为x),就跳过一位,变成x+1,使得构造的数中不包含remain。因此代码中就有 x 多自增1次的操作了。

构造完 k-2 个数之后(设和为sum),我们要对最后一个数,即第 k-1个数进行讨论(代码中的need,它的值等于 n - sum - remain)。如果这个 need <= x (第 k-2 个数的值就是x),代表 k - 1个数中有两个数是相同的,与题意不符。而且它就算怎样调整都不能构造出答案,因为我们是从最小的自然数1开始构造的!

比较难理解的是,最后的那个k-1的数,我们还是x++,但是sum + x 有可能并不等于 (确切来讲是小于,如果是大于都是无解的,从最小数开始构造嘛)square,但是我们可以调整 k-2个数中的某个数ai令它大点--->ai+k,使得sum + x(此时的x不是原来单纯的 x++ 了,x = square-(sum-ai+ai+k)) 不过这些情况比较复杂,所以我们反其道而行之,讨论无解的情况!

无解的时候,有两种情况。最后 前面不是说 x++ 吗,那么第一种肯定无解的情况:x == remain && need == remain!这个表示remain 在k-2个数的构造中根本没有遇到。而且need这个值 是必须的,无论前面怎样调整,还是那个道理,从最小数1开始构造。

最难理解的是第二种情况 x+1 == remain && need == remain (我也想了好久才想通,wa了这么多次就是这个没想出来)。remain 是动不了的,只能从need 和 前面已经构造了的 k-2个数中开刀。

我们不希望need = remain,于是只能让k-2个数中的某个数增加1(确切来讲只能是黑色字体的x,因为数与数之间是紧挨着的),变成蓝色部分的x++,此时need 确实不等于 remain,但是need 却等于蓝色部分的x++(need - 1)了,也就是最后构造出来的k-1 个数中有两个数是相同的!!!

只要排除这两种情况,就表示可以得出解。

 #include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
using namespace std; int n, k; bool check(int square, int remain)
{
if (remain == && square == ) // k = 2, remain = 1的情况
return false;
int sum = ;
int x = ;
for (int i = ; i < k-; i++) // 构造k-2个数
{
x++;
if (x == remain)
x++;
sum += x;
}
int need = n-sum-remain;
if (need <= x) // 最后第k-1个数在前k-2个已构造数里面
return false;
// need > x(未自增前),有可能与remain有冲突(remain在k-2个数之外)
x++;
if (x == remain || x + == remain)
{
if (need == remain) // need == remain == x
return false; // or need == remain == x+1
}
return true; // need > x+1
} int main()
{
while (scanf("%d%d", &n, &k) != EOF)
{
int flag = ;
for (int i = ; i * i < n && !flag; i++)
{
int square = i*i;
int remain = n - square;
if (remain == || (k-)*k/ > square)
continue;
if (check(square, remain))
{
flag = ;
break;
}
}
printf("%s\n", flag ? "YES" : "NO");
}
return ;
}

BestCoder6 1002 Goffi and Squary Partition(hdu 4982) 解题报告的更多相关文章

  1. BestCoder22 1002.NPY and arithmetic progression(hdu 5143) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5143 题目意思:给出 1, 2, 3, 4 的数量,分别为a1, a2, a3, a4,问是否在每个数 ...

  2. BestCoder16 1002.Revenge of LIS II(hdu 5087) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5087 题目意思:找出第二个最长递增子序列,输出长度.就是说,假如序列为 1 1 2,第二长递增子序列是 ...

  3. HDU 4982 Goffi and Squary Partition(推理)

    HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...

  4. hdu 4982 Goffi and Squary Partition

    Goffi and Squary Partition Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Total Subm ...

  5. hdu4982 Goffi and Squary Partition (DFS解法)

    BestCoder Round #6 B http://acm.hdu.edu.cn/showproblem.php?pid=4982 Goffi and Squary Partition Time ...

  6. 【HDOJ】4982 Goffi and Squary Partition

    题意就是整数划分,选出和为n的K个整数,其中K-1个数的和为完全平方数S.选择整数时需要从1,2,3..连续选择,当选择整数与n-S相等时,需要跳过n-S,即选择n-S+1.如此选择K-2个数,从而可 ...

  7. Goffi and Squary Partition

    题意: 给你N和K,问能否将N拆分成K个互不相同的正整数,并且其中K-1个数的和为完全平方数. PS:这道题目原来是要求输出一种可行方案的,所以下面题解是按照输出方案的思想搞的. 分析: 我们尝试枚举 ...

  8. BestCoder20 1002.lines (hdu 5124) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5124 题目意思:给出 n 条线段,每条线段用两个整数描述,对于第 i 条线段:xi,yi 表示该条线段 ...

  9. BestCoder18 1002.Math Problem(hdu 5105) 解题报告

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5105 题目意思:给出一个6个实数:a, b, c, d, l, r.通过在[l, r]中取数 x,使得 ...

随机推荐

  1. Ubuntu 16.04下使用Wine安装PowerDesigner15

    说明: 1.关于没有.wine文件夹的解决方法:在命令行上运行winecfg: 2.使用的Wine版本是深度出品(Deepin),已经精简了很多没用的配置,使启动能非常快,占用资源小. 下载: (链接 ...

  2. 一个能让你了解所有函数调用顺序的Android库

    http://mobile.51cto.com/android-536059.htm 原理 本库其实并没有什么黑科技,本库也没有java代码,核心就是2个build.gradle中的task.首先,原 ...

  3. 利用NSString的Hash方法比较字符串

    实际编程总会涉及到比较两个字符串的内容,一般会用 [string1 isEqualsToString:string2] 来比较两个字符串是否一致.对于字符串的isEqualsToString方法,需要 ...

  4. mac os+selenium2+Firefox驱动+python3

    此文章建立在之前写的chrome+selenium+Python环境配置的基础上,链接http://blog.csdn.net/zxy987872674/article/details/5308289 ...

  5. C++ 面试问题

    一面 (1) 多态性都有哪些?(静态和动态,然后分别叙述了一下虚函数和函数重载) (2) 动态绑定怎么实现?(就是问了一下基类与派生类指针和引用的转换问题) (3) 类型转换有哪些?(四种类型转换,分 ...

  6. 你所不知道的库存超限做法 服务器一般达到多少qps比较好[转] JAVA格物致知基础篇:你所不知道的返回码 深入了解EntityFramework Core 2.1延迟加载(Lazy Loading) EntityFramework 6.x和EntityFramework Core关系映射中导航属性必须是public? 藏在正则表达式里的陷阱 两道面试题,带你解析Java类加载机制

    你所不知道的库存超限做法 在互联网企业中,限购的做法,多种多样,有的别出心裁,有的因循守旧,但是种种做法皆想达到的目的,无外乎几种,商品卖的完,系统抗的住,库存不超限.虽然短短数语,却有着说不完,道不 ...

  7. linux c 网络编程:用域名获取IP地址或者用IP获取域名 网络地址转换成整型 主机字符顺序与网络字节顺序的转换

    用域名获取IP地址或者用IP获取域名 #include<stdio.h> #include<sys/socket.h> #include<netdb.h> int ...

  8. alexNet--deep learning--alexNet的11行代码

    % Copyright 2016 The MathWorks, Inc. clear camera = webcam(  2  ); % Connect to the camerannet = ale ...

  9. 在Linux的Eclipse下搭建Android环境

    http://blog.csdn.net/lyonte/article/details/6407242 一.Java环境安装配置详见<在Linux下搭建Java环境>http://blog ...

  10. IGP和EGP(转载)

    AS(自治系统) - 也称为路由域,是指一个共同管理区域内的一组路由器.例如公司的内部网络和 Internet 服务提供商的网络.由于 Internet 基于自治系统,因此既需要使用内部路由协议,也需 ...