【线性基】51nod1312 最大异或和&LOJ114 k大异或和
1312 最大异或和
第一行一个整数N,且1<=N<=50
接下来N行每行一个整数S[i],且0<=S[i]<=1,000,000,000,000,000 (10^15)
一个整数,即最后集合可能的最大值SUM。
3
1
2
3
8
题解
处理出来线性基直接求得结果即可
代码
//by 减维
#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<queue>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define il inline
#define db double
#define rg register
#define mpr make_pair
#define maxn 105
#define eps 1e-8
#define inf (1<<30)
#define pi 3.1415926535897932384626L
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} int n,cnt;
ll mx,ans,a[maxn],b[maxn],p[],bin[]; int main()
{
n=read();
bin[]=;for(int i=;i<=;++i) bin[i]=bin[i-]<<;
for(int i=;i<=n;++i) scanf("%lld",&a[i]),b[i]=a[i];
for(int i=;i<=n;++i)
for(int j=;j>=;--j)
if(a[i]&bin[j])
if(!p[j]){p[j]=a[i];break;}
else a[i]^=p[j];
for(int i=;i>=;--i)
for(int j=i-;j>=;--j)
if(p[i]&bin[j]) p[i]^=p[j];
for(int i=;i>=;--i)
if(p[i])
{
if((mx^p[i])>mx) mx^=p[i];
cnt++;
}
ans+=mx*(n-cnt+);
cnt--;
for(int i=;cnt&&i<=;i++)
if(p[i]) ans+=(mx^p[i]),cnt--;
printf("%lld",ans);
return ;
}
#114. k 大异或和
题目描述
这是一道模板题。
给由 n n n 个数组成的一个可重集 S S S,每次给定一个数 k k k,求一个集合 T⊆S T \subseteq S T⊆S,使得集合 T T T 在 S S S 的所有非空子集的不同的异或和中,其异或和 T1xorT2xor…xorT|T| 是第 k k k 小的。
输入格式
第一行一个数 n n n。
第二行 n n n 个数,表示集合 S S S。
第三行一个数 m m m,表示询问次数。
第四行 m m m 个数,表示每一次询问的 k k k。
输出格式
输出 m m m 行,对应每一次询问的答案,第 k k k 小的异或和。如果集合 S S S 的所有非空子集中,不同的异或和数量不足 k k k,输出 −1 -1 −1。
样例
样例输入
3
1 2 3
5
1 2 3 4 5
样例输出
0
1
2
3
-1
数据范围与提示
1≤n,m≤10^5,0≤Si≤250,0≤Si≤250
题解
要把线性基求出来后再消下元
对于询问,把k二进制拆分再求即可
代码
//by 减维
#include<set>
#include<map>
#include<ctime>
#include<cmath>
#include<queue>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define il inline
#define db double
#define rg register
#define mpr make_pair
#define maxn 100005
#define eps 1e-8
#define inf (1<<30)
#define pi 3.1415926535897932384626L
using namespace std; inline int read()
{
int ret=;bool fla=;char ch=getchar();
while((ch<''||ch>'')&&ch!='-')ch=getchar();
if(ch=='-'){fla=;ch=getchar();}
while(ch>=''&&ch<=''){ret=ret*+ch-'';ch=getchar();}
return fla?-ret:ret;
} int n,m,cnt;
ll p[],bin[],a[]; int main()
{
n=read();int pd=;
bin[]=;for(int i=;i<=;++i) bin[i]=bin[i-]<<;
for(int i=;i<=n;++i)
{
ll x;scanf("%lld",&x);
for(int j=;j>=;--j)
if(x&bin[j]){
if(!p[j]){p[j]=x;break;}
x^=p[j];
}
if(!x) pd=;
}
for(int i=;i>=;--i)
for(int j=i-;j>=;--j)
if(bin[j]&p[i]) p[i]^=p[j];
for(int i=;i<=;++i) if(p[i]) a[cnt++]=p[i];
m=read();
ll k;
for(int i=;i<=m;++i)
{
scanf("%lld",&k);k-=pd;
ll ans=;
if(k>bin[cnt]-){puts("-1");continue;}
for(int j=cnt-;j>=;--j)
if(k&bin[j]) ans^=a[j];
printf("%lld\n",ans);
}
return ;
}
【线性基】51nod1312 最大异或和&LOJ114 k大异或和的更多相关文章
- LOJ114 k大异或和
传送门 (vjudge和hdu也有但是我觉得LOJ好看!而且限制少!) 不过本题描述有误,应该是k小. 首先我们需要对线性基进行改造.需要把每一位改造成为,包含最高位的能异或出来的最小的数. 为啥呢? ...
- LOJ.114.K大异或和(线性基)
题目链接 如何求线性基中第K小的异或和?好像不太好做. 如果我们在线性基内部Xor一下,使得从高到低位枚举时,选base[i]一定比不选base[i]大(存在base[i]). 这可以重构一下线性基, ...
- Loj 114 k大异或和
Loj 114 k大异或和 构造线性基时有所变化.试图构造一个线性基,使得从高到低位走,异或上一个非 \(0\) 的数,总能变大. 构造时让任意两个 \(bas\) 上有值的 \(i,j\) ,满足 ...
- [LOJ#114]k 大异或和
[LOJ#114]k 大异或和 试题描述 这是一道模板题. 给由 n 个数组成的一个可重集 S,每次给定一个数 k,求一个集合 T⊆S,使得集合 T 在 S 的所有非空子集的不同的异或和中,其异或和 ...
- LibreOJ #114. k 大异或和
二次联通门 : LibreOJ #114. k 大异或和 /* LibreOJ #114. k 大异或和 WA了很多遍 为什么呢... 一开始读入原数的时候写的是for(;N--;) 而重新构造线性基 ...
- LOJ114 k大(xiao)异或和(线性基)
构造线性基后将其消至对任意位至多只有一个元素该位为1.于是就可以贪心了,将k拆成二进制就好.注意check一下是否能异或出0. #include<iostream> #include< ...
- 【loj114】k大异或和 线性基+特判
题目描述 给由 $n$ 个数组成的一个可重集 $S$ ,每次给定一个数 $k$ ,求一个集合 $T⊆S$ ,使得集合 $T$ 在 $S$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...
- 第k大异或值
这道题与2018年十二省联考中的异或粽子很相像,可以算作一个简易版: 因为这不需要可持久化: 也就是说求任意两个数异或起来的第k大值: 首先把所有数放进trie里. 然后二分答案,枚举每个数,相应地在 ...
- hdu 3949 第k大异或组合
题意: 给你一些数,其中任选一些数(大于等于一个),那么他们有一个异或和. 求所有这样的异或和的第k小. 我们可以将每一位看成一维,然后就是给我们n个60维的向量,求它们线性组合后得到的向量空间中,第 ...
随机推荐
- 2018.6.22 Java试题测试结果
如何从有数字规律的网址抓取网页并保存在当前目录?假设网址为 http://test/0.xml,其中这个数字可以递增到100. for((i=0;i<100;++i));do wget http ...
- Bootstrap 轮播(Carousel)插件
轮播插件是一种灵活的响应式的向站点添加滑块的方式.除此之外,内容也是非常灵活的.可是图像,内嵌框架,视频或者其它您想的放置任何内容的类型. 下面是一个简单的幻灯片,使用轮播(carousel)插件显示 ...
- Uva 网络(Network,Seoul 2007,LA 3902)
#include<iostream> #include<cstring> #include<vector> using namespace std; +; int ...
- mysql基础,DISTINCT关键字
- PHP静态文件缓存
ob_start(); 2 echo 'aaa'; 3 $string = ob_get_contents(); 4 file_put_contents('a.html', $string); 5 o ...
- 文档对象模型 DOM
1 DOM概述 1.1 什么是DOM 文档对象模型 Document Object Model 文档对象模型 是表示和操作 HTML和XML文档内容的基础API 文档对象模型,是W3C组织推荐的处理可 ...
- 科学计算库Numpy——数值计算
矩阵 求和 乘积 最大值和最小值 最大值和最小值的位置 平均数 标准差 方差 限制 四舍五入
- Bubblesort冒泡算法
最简单的算法,大家都知道两层for循环,中间加一个过渡用来交换数据 小例子: package com.neuedu.algorithm;//算法 public class Bubblesort { / ...
- Linux usb gadget框架概述
很幸运,在公司开发了gadget相关驱动,总结下来,大大小小开发了四个与gadget相关的驱动,字符驱动.g_multi.g_ether.g_zero,在这里把自己对gadget的开发中自己的感悟记录 ...
- C++构造函数使用的多种方法
// classes and uniform initialization #include <iostream> using namespace std; class Circle { ...