[AGC004E] Salvage Robots (DP)
Description
蛤蟆国的领土我们可以抽象为H*W的笼子,在这片蛤土上,有若干个机器人和一个出口,其余都是空地,每次蛤蟆会要求让所有的机器人向某个方向移动一步,当机器人移动到出口时会被蛤蟆活摘出来,当机器人移出笼子时会自焚,求你最多取出的多少个机器人。
Input
第一行两个整数H,W,如题目所述
接下来H行,每行W个字符,包含三类字符:
第一类是'.'表示空地
第二类是'o'表示有一个机器人
第三类是'E'表示有一个出口,出口有且仅有一个
题解:
这看起来就像是一道dp题……(我TM没想出来)
我们用 \(f[i][j][k][l]\) 表示我们已经把左上角为 \((i,j)\),右下角为 \((k,l)\) 的机器人都去掉了,最多能取多少个。
那我们状态转移的时候加入一行或者一列。
那我们要往上拓展一行时,就要看出口上方矩阵的高度要比底部剩余的高度要小才能把这些机器人都收入囊中,新加的那行的宽度就为左右剩余空格的最大值……
CODE:
#include<iostream>
#include<cstdio>
using namespace std;
char map[105][105];
int n,m,x,y,ans=0,a[105][105],b[105][105];
short f[105][105][105][105];
int max(int x,int y){return x>y?x:y;}
int min(int x,int y){return x<y?x:y;}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%s",map[i]+1);
for(int j=1;j<=m;j++){
a[i][j]=a[i][j-1]+(map[i][j]=='o');
b[i][j]=b[i-1][j]+(map[i][j]=='o');
if(map[i][j]=='E')x=i,y=j;
}
}
for(int i=x;i>=1;i--)
for(int j=y;j>=1;j--){
for(int k=x;k<=n;k++)
for(int l=y;l<=m;l++){
if(i>1&&i-1>k-x)ans=max(ans,f[i-1][j][k][l]=max(f[i-1][j][k][l],f[i][j][k][l]+a[i-1][min(l,m-y+j)]-a[i-1][max(j-1,l-y)]));
if(k<n&&n-k>x-i)ans=max(ans,f[i][j][k+1][l]=max(f[i][j][k+1][l],f[i][j][k][l]+a[k+1][min(l,m-y+j)]-a[k+1][max(j-1,l-y)]));
if(j>1&&j-1>l-y)ans=max(ans,f[i][j-1][k][l]=max(f[i][j-1][k][l],f[i][j][k][l]+b[min(k,n-x+i)][j-1]-b[max(i-1,k-x)][j-1]));
if(l<m&&m-l>y-j)ans=max(ans,f[i][j][k][l+1]=max(f[i][j][k][l+1],f[i][j][k][l]+b[min(k,n-x+i)][l+1]-b[max(i-1,k-x)][l+1]));
}
}
printf("%d",ans);
}
[AGC004E] Salvage Robots (DP)的更多相关文章
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- 最长公共子序列长度(dp)
/// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...
随机推荐
- 1046: [HAOI2007]上升序列
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5822 Solved: 2071[Submit][Status][Discuss] Descript ...
- MySql主从同步笔记
1.MySql主从同步是基于二进制日志实现的,二进制日志记录了主服务器数据库的所有变动,从服务器通过读取和执行该日志文件保持和主数据库的数据一致: 2.配置主服务器 a.开启二进制日志,找到MySql ...
- Linux系统故障分析与排查--日志分析
处理Linux系统出现的各种故障时,故障的症状是最先发现的,而导致这以故障的原因才是最终排除故障的关键.熟悉Linux系统的日志管理,了解常见故障的分析与解决办法,将有助于管理员快速定位故障点,“对症 ...
- Install Jenkins 2.1.36 and openjdk 1.7.0 on centos 7
#!/bin/bash## Copyright (c) 2014-2015 Michael Dichirico (https://github.com/mdichirico)# This softwa ...
- 四 python并发编程之协程
一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...
- php 数据脱敏显示
/** * 数据脱敏 * @param $string 需要脱敏值 * @param int $start 开始 * @param int $length 结束 * @param string $re ...
- React学习记录一
半路出家直接上手React,其实有点吃力,所以开始研究create-react-app,从这里下手吧. create-react-app 官方网站:https://github.com/faceboo ...
- vue之神奇的动态按钮
今天我们将利用vue的条件指令来完成一个简易的动态变色功能按钮 首先我们还是要对vue进行配置,在上篇随笔中有相关下载教学. 然后我们要在html页面上搭建三个简易的按钮,颜色分别为紫,绿和蓝(颜色随 ...
- Flask初学者:配置文件
如果设置项比较少的话可以使用“app.config['param_name']=value”的形式直接使用,如果需要设置的参数比较多的话,可以单独新建一个配置文件用来存放配置信息,配置文件中的参数需大 ...
- Oracle redo与undo 第二弹
首先看一下undo与redo的字面意思: undo:撤销,也就是取消之前的操作. redo:重做,重新执行一遍之前的操作. 什么是REDO REDO记录transaction logs,分为o ...