uva 103 Stacking Boxes(最长上升子序列)
Description
| Stacking Boxes |
Background
Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.
The Problem
Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box
(length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.
In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes
such that each box
nests in box
(
.
A box D = (
) nests in a box E = (
) if there is some rearrangement of the
such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).
For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.
Formally, we define nesting as follows: box D = (
) nests in box E = (
) if there is a permutation
of
such that (
) ``fits'' in (
) i.e., if
for all
.
The Input
The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)
This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The
line in the sequence (
) gives the measurements for the
box.
There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).
In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.
The Output
For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.
The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).
If there is more than one longest nesting string then any one of them can be output.
Sample Input
5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9
Sample Output
5
3 1 2 4 5
4
7 2 5 6 题目大意:有m维的箱子,严格递增最多能嵌套多少个箱子。
解题思路:对每个箱子的属性sort下,再对sort下,求最长上升子序列,输出个数跟路径。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn=;
const int maxm=;
const int INF=;
int n,m;
int pre[maxn],dp[maxn]; struct point
{
int id,f[maxm];
}p[maxn]; void read_point(int i)
{
int j;p[i].id=i;
for(j=;j<=m;j++)
scanf("%d",&p[i].f[j]);
sort(p[i].f+,p[i].f+m+);
} bool mycomp(const point a,const point b)
{
if(a.f[]!=b.f[])
return a.f[]<b.f[];
return true;
}
bool judge(int j,int i)
{
for(int k=;k<=m;k++)
if(p[i].f[k]<=p[j].f[k])
return false;
return true;
}
void printf_ans(int d,int i)
{
if(d==) return;
int u=pre[i];
printf_ans(d-,u);
printf(d==?"%d":" %d",p[i].id);
}
int main()
{
int i,j,ansm,ansi;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++) read_point(i);
sort(p+,p+n+,mycomp);
memset(p[].f,,sizeof(p[].f));
memset(pre,-,sizeof(pre));
memset(dp,,sizeof(dp));
for(i=;i<=n;i++)
{
for(j=;j<i;j++)
if(judge(j,i) && dp[i]<dp[j]+)
{
dp[i]=dp[j]+;
pre[i]=j;
}
}
ansm=-INF;
for(i=;i<=n;i++)
if(ansm<dp[i])
{
ansm=dp[i];ansi=i;
}
printf("%d\n",ansm);
printf_ans(ansm,ansi);
printf("\n");
}
return ;
}
uva 103 Stacking Boxes(最长上升子序列)的更多相关文章
- UVa 103 Stacking Boxes --- DAG上的动态规划
UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...
- uva 103 Stacking Boxes(DAG)
题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...
- UVA 103 Stacking Boxes n维最长上升子序列
题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...
- UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)
Stacking Boxes Background Some concepts in Mathematics and Computer Science are simple in one or t ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- UVa 103 - Stacking Boxes (LIS,打印路径)
链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn}, 对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...
- UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索
题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...
- UVa 103 - Stacking Boxes
题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...
- UVA 103 Stacking Boxes --LIS
实际上是一个扩展维度的矩形嵌套问题. 一个物体能嵌入另一个物体中,当且仅当这个物体的所有维度的长度都小于另外一个(本题是小于等于),又因为可以旋转等变换,所以干脆将每个箱子的边从小到大排序,以便于判断 ...
随机推荐
- Stream great concerts wherever you are
This time of year, we take stock of what we're thankful for — and above all else, we’re thankful for ...
- Nat Nanotechnol | 朱涛/陈春英等合作发现碳纳米管呼吸暴露后的延迟毒性导致小鼠原位乳腺肿瘤的多发性广泛转移
碳纳米管(Carbon nanotube, CNT)是重要的一维纳米材料,由于其良好的力学.电学和化学性能,可用作超强纤维.隐身材料.大功率超级电容器.传感器等,在纳米材料.信息.光电.能源.传感及生 ...
- Dojo的declare接口
declare(classname,[],{}) declare的第一个参数是可选的,代表类的名称 declare的第二个参数代表类的继承关系,比如继承哪一个父类,可以看到:第二个参数是一个数组,所以 ...
- JavaScript无提示关闭当前页面窗口,兼容IE/Firefox/Chrome
<script type="text/javascript" language="javascript"> function fc(){ var b ...
- 强制类型转换(int)、(int&)和(int*)的区别
我们先来看两行代码: float x=1.75,y=1.75; cout<<(int)x<<" "<<(int&)y<<en ...
- 【上下界网络流 二分】bzoj2406: 矩阵
感觉考试碰到上下界网络流也还是写不来啊 Description Input 第一行两个数n.m,表示矩阵的大小. 接下来n行,每行m列,描述矩阵A. 最后一行两个数L,R. Output 第一行,输出 ...
- 15.Yii2.0框架where单表查询
目录 新建控制器 HomeController.php 新建model article.php 新建控制器 HomeController.php D:\xampp\htdocs\yii\control ...
- matplotlib 设置图形大小时 figsize 与 dpi 的关系
matplotlib 中设置图形大小的语句如下: fig = plt.figure(figsize=(a, b), dpi=dpi) 其中: figsize 设置图形的大小,a 为图形的宽, b 为图 ...
- (转)JVM各种内存溢出是否产生dump
对于java的内存溢出,如果配置-XX:+HeapDumpOnOutOfMemoryError,很明确的知道堆内存溢出时会生成dump文件.但永久代内存溢出不明确是否会生成,今天来做一个实验: 永久代 ...
- 关于前台jsp页面的js取值问题
在后程序中传一个字符串到前台页面上,后台代码model.addAttribute("ccc", "cccc"); 在页面js上用下面两种方法取值 1. var ...