Description

 
 Stacking Boxes 

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box  (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes  such that each box  nests in box  (  .

A box D = (  ) nests in a box E = (  ) if there is some rearrangement of the  such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = (  ) nests in box E = (  ) if there is a permutation  of such that (  ) ``fits'' in (  ) i.e., if  for all  .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The  line in the sequence (  ) gives the measurements for the  box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6 题目大意:有m维的箱子,严格递增最多能嵌套多少个箱子。
解题思路:对每个箱子的属性sort下,再对sort下,求最长上升子序列,输出个数跟路径。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn=;
const int maxm=;
const int INF=;
int n,m;
int pre[maxn],dp[maxn]; struct point
{
int id,f[maxm];
}p[maxn]; void read_point(int i)
{
int j;p[i].id=i;
for(j=;j<=m;j++)
scanf("%d",&p[i].f[j]);
sort(p[i].f+,p[i].f+m+);
} bool mycomp(const point a,const point b)
{
if(a.f[]!=b.f[])
return a.f[]<b.f[];
return true;
}
bool judge(int j,int i)
{
for(int k=;k<=m;k++)
if(p[i].f[k]<=p[j].f[k])
return false;
return true;
}
void printf_ans(int d,int i)
{
if(d==) return;
int u=pre[i];
printf_ans(d-,u);
printf(d==?"%d":" %d",p[i].id);
}
int main()
{
int i,j,ansm,ansi;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++) read_point(i);
sort(p+,p+n+,mycomp);
memset(p[].f,,sizeof(p[].f));
memset(pre,-,sizeof(pre));
memset(dp,,sizeof(dp));
for(i=;i<=n;i++)
{
for(j=;j<i;j++)
if(judge(j,i) && dp[i]<dp[j]+)
{
dp[i]=dp[j]+;
pre[i]=j;
}
}
ansm=-INF;
for(i=;i<=n;i++)
if(ansm<dp[i])
{
ansm=dp[i];ansi=i;
}
printf("%d\n",ansm);
printf_ans(ansm,ansi);
printf("\n");
}
return ;
}
 

uva 103 Stacking Boxes(最长上升子序列)的更多相关文章

  1. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  2. uva 103 Stacking Boxes(DAG)

    题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...

  3. UVA 103 Stacking Boxes n维最长上升子序列

    题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...

  4. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  5. UVa 103 - Stacking Boxes(dp求解)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  6. UVa 103 - Stacking Boxes (LIS,打印路径)

    链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn},  对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...

  7. UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索

    题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...

  8. UVa 103 - Stacking Boxes

    题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...

  9. UVA 103 Stacking Boxes --LIS

    实际上是一个扩展维度的矩形嵌套问题. 一个物体能嵌入另一个物体中,当且仅当这个物体的所有维度的长度都小于另外一个(本题是小于等于),又因为可以旋转等变换,所以干脆将每个箱子的边从小到大排序,以便于判断 ...

随机推荐

  1. Redis的安装以及spring整合Redis时出现Could not get a resource from the pool

    Redis的下载与安装 在Linux上使用wget http://download.redis.io/releases/redis-5.0.0.tar.gz下载源码到指定位置 解压:tar -xvf ...

  2. logging console not work

    配置 log 信息传输到控制台 参考官网:https://docs.djangoproject.com/en/2.1/topics/logging/ By default, this config o ...

  3. Codevs1081 线段树练习 2

    题目描述 Description 给你N个数,有两种操作 1:给区间[a,b]的所有数都增加X 2:询问第i个数是什么? 输入描述 Input Description 第一行一个正整数n,接下来n行n ...

  4. PHP获取文件夹内所有文件包括子目录文件的名称或路径

    /* * new getFile($_dir[,$_emptyDir,$_fileType]); * @parma $_dir 是目录名称 * @parma $_emptyDir 是否获取空文件夹,选 ...

  5. Yii2.0 的安装学习

    视频学习地址: 后盾网视频: http://www.houdunren.com/houdunren18_lesson_76?vid=7350 与<Yii框架>不得不说的故事—基础篇 htt ...

  6. Python基础——字典(dict)

    由键-值对构建的集合. 创建 dic1={} type(dic1) dic2=dict() type(dic2) 初始化 dic2={'hello':123,'world':456,'python': ...

  7. 谈谈你对Hibernate的理解

    答: 1. 面向对象设计的软件内部运行过程可以理解成就是在不断创建各种新对象.建立对象之间的关系,调用对象的方法来改变各个对象的状态和对象消亡的过程,不管程序运行的过程和操作怎么样,本质上都是要得到一 ...

  8. TTL与COMS的区别

    1.电平的上限和下限定义不一样,CMOS具有更大的抗噪区域. 同是5伏供电的话,ttl一般是1.7V和3.5V的样子,CMOS一般是  2.2V,2.9V的样子,不准确,仅供参考. 2.电流驱动能力不 ...

  9. Aizu 2450 Do use segment tree 树链剖分

    题意: 给出一棵\(n(1 \leq n \leq 200000)\)个节点的树,每个节点有一个权值. 然后有\(2\)种操作: \(1 \, a \, b \, c\):将路径\(a \to b\) ...

  10. session的工作原理、django的超时时间设置及session过期判断

    1.session原理 cookie是保存在用户浏览器端的键值对 session是保存在服务器端的键值对 session服务端中存在的数据为: session = { 随机字符串1:{ 用户1的相关信 ...