Description

 
 Stacking Boxes 

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box  (length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes  such that each box  nests in box  (  .

A box D = (  ) nests in a box E = (  ) if there is some rearrangement of the  such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = (  ) nests in box E = (  ) if there is a permutation  of such that (  ) ``fits'' in (  ) i.e., if  for all  .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The  line in the sequence (  ) gives the measurements for the  box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6 题目大意:有m维的箱子,严格递增最多能嵌套多少个箱子。
解题思路:对每个箱子的属性sort下,再对sort下,求最长上升子序列,输出个数跟路径。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn=;
const int maxm=;
const int INF=;
int n,m;
int pre[maxn],dp[maxn]; struct point
{
int id,f[maxm];
}p[maxn]; void read_point(int i)
{
int j;p[i].id=i;
for(j=;j<=m;j++)
scanf("%d",&p[i].f[j]);
sort(p[i].f+,p[i].f+m+);
} bool mycomp(const point a,const point b)
{
if(a.f[]!=b.f[])
return a.f[]<b.f[];
return true;
}
bool judge(int j,int i)
{
for(int k=;k<=m;k++)
if(p[i].f[k]<=p[j].f[k])
return false;
return true;
}
void printf_ans(int d,int i)
{
if(d==) return;
int u=pre[i];
printf_ans(d-,u);
printf(d==?"%d":" %d",p[i].id);
}
int main()
{
int i,j,ansm,ansi;
while(~scanf("%d%d",&n,&m))
{
for(i=;i<=n;i++) read_point(i);
sort(p+,p+n+,mycomp);
memset(p[].f,,sizeof(p[].f));
memset(pre,-,sizeof(pre));
memset(dp,,sizeof(dp));
for(i=;i<=n;i++)
{
for(j=;j<i;j++)
if(judge(j,i) && dp[i]<dp[j]+)
{
dp[i]=dp[j]+;
pre[i]=j;
}
}
ansm=-INF;
for(i=;i<=n;i++)
if(ansm<dp[i])
{
ansm=dp[i];ansi=i;
}
printf("%d\n",ansm);
printf_ans(ansm,ansi);
printf("\n");
}
return ;
}
 

uva 103 Stacking Boxes(最长上升子序列)的更多相关文章

  1. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

  2. uva 103 Stacking Boxes(DAG)

    题目连接:103 - Stacking Boxes 题目大意:有n个w维立体, 输出立体互相嵌套的层数的最大值, 并输出嵌套方式, 可嵌套的要求是外层立体的w条边可以分别对应大于内层立体. 解题思路: ...

  3. UVA 103 Stacking Boxes n维最长上升子序列

    题目链接:UVA - 103 题意:现有k个箱子,每个箱子可以用n维向量表示.如果一个箱子的n维向量均比另一个箱子的n维向量大,那么它们可以套接在一起,每个箱子的n维向量可以互相交换值,如箱子(2,6 ...

  4. UVA 103 Stacking Boxes (dp + DAG上的最长路径 + 记忆化搜索)

     Stacking Boxes  Background Some concepts in Mathematics and Computer Science are simple in one or t ...

  5. UVa 103 - Stacking Boxes(dp求解)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  6. UVa 103 - Stacking Boxes (LIS,打印路径)

    链接:UVa 103 题意:给n维图形,它们的边长是{d1,d2,d3...dn},  对于两个n维图形,求满足当中一个的全部边长 依照随意顺序都一一相应小于还有一个的边长,这种最长序列的个数,而且打 ...

  7. UVA 103 Stacking Boxes 套箱子 DAG最长路 dp记忆化搜索

    题意:给出几个多维的箱子,如果箱子的每一边都小于另一个箱子的对应边,那就称这个箱子小于另一个箱子,然后要求能够套出的最多的箱子. 要注意的是关系图的构建,对箱子的边排序,如果分别都小于另一个箱子就说明 ...

  8. UVa 103 - Stacking Boxes

    题目大意:矩阵嵌套,不过维数是多维的.有两个个k维的盒子A(a1, a1...ak), B(b1, b2...bk),若能找到(a1...ak)的一个排列使得ai < bi,则盒子A可嵌套在盒子 ...

  9. UVA 103 Stacking Boxes --LIS

    实际上是一个扩展维度的矩形嵌套问题. 一个物体能嵌入另一个物体中,当且仅当这个物体的所有维度的长度都小于另外一个(本题是小于等于),又因为可以旋转等变换,所以干脆将每个箱子的边从小到大排序,以便于判断 ...

随机推荐

  1. idea中pom.xml没有工作 IDEA中maven项目pom.xml依赖不生效解决

    问题: 今天在web项目中需要引入poi相关jar包.查看之下才发现pom.xml中的依赖虽然已经下载到了本地仓库 repository,但是却没有加入到项目路径的 Extenal Libraries ...

  2. 使用jquery.ajax实现省市的二级联动(SSH架构)

    首先实现jquery ajax的二级联动 要下载个jquery.js 我在这里就不准备了 自行百度下载 背景介绍:通过部门的ID来查找部门下的所有班级 我实现二级联动的思路是:先查询所有部门 显示在页 ...

  3. 深入理解 hashcode 和 hash 算法

    深入理解 hashcode 和 hash 算法 2017年12月30日 23:06:07 阅读数:5197 标签: hashhashmaphashcode二进制 更多 个人分类: jdk-源码  ht ...

  4. k8s的flannel网络插件配置

    flannel的网络插件配置 Kubernetes网络通信需要解决以下问题:            (1)容器间通信:同一个Pod内的多个容器间的通信,lo            (2)Pod通信:P ...

  5. SEO 优化

    1.什么是SEO优化: 简单的来说就是了解搜索引擎的排名规则,投机所好,让我们的网站在搜索引擎上得到靠前的排名,获取更多流量的一种方式. 2.SEO优化-衡量标准 关键词的排名--核心关键词的效果 收 ...

  6. virtualbox安装win7系统报错(“FATAL:No bootable medium found!”)

    virtualbox属于傻瓜式安装虚拟系统,但博主安装win7系统时,无论怎么调试都还是出现截图所述样式,网上教程很多,但是都不行,其实只有一个根本原因安装的iso镜像不是原生镜像,下载的镜像已经是被 ...

  7. 【laravel】【转发】laravel 导入导出excel文档

    1.简介 Laravel Excel 在 Laravel 5 中集成 PHPOffice 套件中的 PHPExcel ,从而方便我们以优雅的.富有表现力的代码实现Excel/CSV文件的导入和 导出  ...

  8. Leetcode 814. 二叉树剪枝

    题目链接 https://leetcode-cn.com/problems/binary-tree-pruning/description/ 题目描述 给定二叉树根结点 root ,此外树的每个结点的 ...

  9. hdu4864不是一般的贪心

    题目表达的非常清楚,也不绕弯刚开始以为最大权匹配,仔细一想不对,这题的数据双循环建图都会爆,只能先贪心试一下,但一想贪心也要双循环啊,怎么搞? 想了好久没头绪,后来经学长提醒,可以把没用到的先记录下来 ...

  10. HDU 5371 Manacher Hotaru's problem

    求出一个连续子序列,这个子序列由三部分ABC构成,其中AB是回文串,A和C相同,也就是BC也是回文串. 求这样一个最长的子序列. Manacher算法是在所有两个相邻数字之间插入一个特殊的数字,比如- ...