题面

nnn个点,mmm条双向边(正向与反向权值不同),求经过最大边权最小的欧拉回路的权值

分析

commonc大佬博客

  • 精髓就是通过最大流调整无向边的方向使得所有点的入度等于出度

CODE

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
template<typename T>inline void read(T &num) {
char ch; while((ch=getchar())<'0'||ch>'9');
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
}
const int inf = 1e9;
const int MAXN = 1005;
const int MAXM = 100005;
int n, m, p, fir[MAXN], S, T, tot, cnt, deg[MAXN];
struct edge { int to, nxt, c; }e[MAXM];
inline void add(int u, int v, int cc) {
e[cnt] = (edge){ v, fir[u], cc }; fir[u] = cnt++;
e[cnt] = (edge){ u, fir[v], 0 }; fir[v] = cnt++;
}
int dis[MAXN], vis[MAXN], info[MAXN], cur, q[MAXN];
inline bool bfs() {
int head = 0, tail = 0;
vis[S] = ++cur; q[tail++] = S;
while(head < tail) {
int u = q[head++];
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && vis[e[i].to] != cur)
vis[e[i].to] = cur, dis[e[i].to] = dis[u] + 1, q[tail++] = e[i].to;
}
if(vis[T] == cur) memcpy(info, fir, (T+1)<<2);
return vis[T] == cur;
}
int dfs(int u, int Max) {
if(u == T || !Max) return Max;
int flow=0, delta;
for(int &i = info[u]; ~i; i = e[i].nxt)
if(e[i].c && dis[e[i].to] == dis[u] + 1 && (delta=dfs(e[i].to, min(e[i].c, Max-flow)))) {
e[i].c -= delta, e[i^1].c += delta, flow += delta;
if(flow == Max) return flow;
}
return flow;
}
inline int dinic() {
int flow=0, x;
while(bfs()) {
while((x=dfs(S, inf))) flow+=x;
}
return flow;
}
int A[2005], B[2005], C[2005], D[2005];
inline bool check(int mid) {
memset(fir, -1, sizeof fir); cnt = 0;
for(int i = 1; i <= m; ++i) {
if(C[i] > mid) return 0;
if(D[i] <= mid)
add(A[i], B[i], 1);
}
int sum = 0;
for(int i = 1; i <= n; ++i)
if(deg[i] > 0) add(i, T, deg[i]/2);
else if(deg[i] < 0) add(S, i, -deg[i]/2), sum -= deg[i]/2;
return dinic() == sum;
}
int main () {
read(n), read(m); S = 0; T = n+1;
for(int i = 1; i <= m; ++i) {
read(A[i]), read(B[i]), read(C[i]), read(D[i]);
if(C[i] > D[i]) swap(A[i], B[i]), swap(C[i], D[i]);
--deg[A[i]], ++deg[B[i]];
}
for(int i = 1; i <= n; ++i)
if(deg[i] % 2) return printf("NIE"), 0;
int l = 1, r = 1000, mid;
while(l < r) {
mid = (l + r) >> 1;
if(check(mid)) r = mid;
else l = mid+1;
}
printf("%d\n", l);
}

BZOJ 2095 [Poi2010]Bridges (二分+最大流判断混合图的欧拉回路)的更多相关文章

  1. bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]

    2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...

  2. BZOJ 2095: [Poi2010]Bridges

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 869  Solved: 299[Submit][Stat ...

  3. 【刷题】BZOJ 2095 [Poi2010]Bridges

    Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...

  4. bzoj 2095 [Poi2010]Bridges 判断欧拉维护,最大流+二分

    [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1448  Solved: 510[Submit][Status][D ...

  5. bzoj 2095: [Poi2010]Bridges(二分法+混合图的欧拉回路)

    [题意] 给定n点m边的无向图,对于边u,v,从u到v边权为c,从v到u的边权为d,问能够经过每条边一次且仅一次,且最大权值最小的欧拉回路. [思路] 二分答案mid,然后切断权值大于mid的边,原图 ...

  6. poj--1637--Sightseeing tour(网络流,最大流判断混合图是否存在欧拉图)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Sub ...

  7. BZOJ.2095.[POI2010]Bridges(最大流ISAP 二分 欧拉回路)

    题目链接 最小化最大的一条边,二分答案.然后就变成了给一张无向图定向使其为欧拉回路 二分答案后对于一个位置的两条边可能都保留,即双向边,需要给它定向:可能只保留小的一条,即单向边,不需考虑 如何给它定 ...

  8. BZOJ 2095 [POI2010]Bridges (最大流、欧拉回路)

    洛谷上有这题,但是输出方案缺SPJ..(而且我也懒得输出方案了) 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2095 题解: 首先判 ...

  9. bzoj2095: [Poi2010]Bridges(二分+混合图求欧拉回路)

    传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路 ...

随机推荐

  1. oracle管道函数的用法(一行拆为多行)

    oracle管道函数是一类特殊的函数,oracle管道函数返回值类型必须为集合 如果需要在客户端实时的输出函数执行过程中的一些信息,在oracle9i以后可以使用管道函数(pipeline funct ...

  2. Linux安装 PostgreSQL

    1.在线安装 yum install postgresql-server -y 2.初始化数据库 service postgresql initdb 3.设置自动启动 hkconfig postgre ...

  3. WebElement的方法:

    这个类代表HTML页面元素 id_ #当前元素的ID tag_name #获取元素标签名的属性 text #获取该元素的文本. click() #单击(点击)元素 submit() #提交表单 cle ...

  4. harbor环境搭建及web使用

    概述 Habor是由VMWare公司开源的容器镜像仓库.事实上,Habor是在Docker Registry上进行了相应的企业级扩展,从而获得了更加广泛的应用,这些新的企业级特性包括:管理用户界面,基 ...

  5. 此项目与Visual Studio的当前版本不兼容的报错

    问题再现:程序是用visual studio 2013开发的,放在本地运行报此项目与Visual Studio的当前版本不兼容.本地是visual studio 2010. 解决办法: <1&g ...

  6. Linux下如何查看tomcat是否启动、查看tomcat启动日志

    在Linux系统下,重启Tomcat使用命令的操作! 1.首先,进入Tomcat下的bin目录 cd /usr/local/tomcat/bin 使用Tomcat关闭命令 ./shutdown.sh ...

  7. CSPS2019游记

    Day1: T1:格雷码?看一眼感觉是结论题,但是没头绪推不出来,硬刚40min想到$\oplus$切了. 但是没写unsigned挂了五分... T2:全场爆切人均50的题,就我一个写挂了35pts ...

  8. maftools|TCGA肿瘤突变数据的汇总,分析和可视化

    本文首发于公众号“生信补给站”,https://mp.weixin.qq.com/s/WG4JHs9RSm5IEJiiGEzDkg 之前介绍了使用maftools | 从头开始绘制发表级oncoplo ...

  9. restTemplate源码解析(二)restTemplate的核心逻辑

    所有文章 https://www.cnblogs.com/lay2017/p/11740855.html 正文 上一篇文章中,我们构造了一个RestTemplate的Bean实例对象.本文将主要了解一 ...

  10. 基于【 centos7】一 || 安装ELK

    一.安装jdk 上传安装包并解压:tar -zxvf ... 配置环境变量: 在配置文件中添加如下配置信息:vi /etc/profile export JAVA_HOME=/usr/local/jd ...