题面

nnn个点,mmm条双向边(正向与反向权值不同),求经过最大边权最小的欧拉回路的权值

分析

commonc大佬博客

  • 精髓就是通过最大流调整无向边的方向使得所有点的入度等于出度

CODE

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
template<typename T>inline void read(T &num) {
char ch; while((ch=getchar())<'0'||ch>'9');
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
}
const int inf = 1e9;
const int MAXN = 1005;
const int MAXM = 100005;
int n, m, p, fir[MAXN], S, T, tot, cnt, deg[MAXN];
struct edge { int to, nxt, c; }e[MAXM];
inline void add(int u, int v, int cc) {
e[cnt] = (edge){ v, fir[u], cc }; fir[u] = cnt++;
e[cnt] = (edge){ u, fir[v], 0 }; fir[v] = cnt++;
}
int dis[MAXN], vis[MAXN], info[MAXN], cur, q[MAXN];
inline bool bfs() {
int head = 0, tail = 0;
vis[S] = ++cur; q[tail++] = S;
while(head < tail) {
int u = q[head++];
for(int i = fir[u]; ~i; i = e[i].nxt)
if(e[i].c && vis[e[i].to] != cur)
vis[e[i].to] = cur, dis[e[i].to] = dis[u] + 1, q[tail++] = e[i].to;
}
if(vis[T] == cur) memcpy(info, fir, (T+1)<<2);
return vis[T] == cur;
}
int dfs(int u, int Max) {
if(u == T || !Max) return Max;
int flow=0, delta;
for(int &i = info[u]; ~i; i = e[i].nxt)
if(e[i].c && dis[e[i].to] == dis[u] + 1 && (delta=dfs(e[i].to, min(e[i].c, Max-flow)))) {
e[i].c -= delta, e[i^1].c += delta, flow += delta;
if(flow == Max) return flow;
}
return flow;
}
inline int dinic() {
int flow=0, x;
while(bfs()) {
while((x=dfs(S, inf))) flow+=x;
}
return flow;
}
int A[2005], B[2005], C[2005], D[2005];
inline bool check(int mid) {
memset(fir, -1, sizeof fir); cnt = 0;
for(int i = 1; i <= m; ++i) {
if(C[i] > mid) return 0;
if(D[i] <= mid)
add(A[i], B[i], 1);
}
int sum = 0;
for(int i = 1; i <= n; ++i)
if(deg[i] > 0) add(i, T, deg[i]/2);
else if(deg[i] < 0) add(S, i, -deg[i]/2), sum -= deg[i]/2;
return dinic() == sum;
}
int main () {
read(n), read(m); S = 0; T = n+1;
for(int i = 1; i <= m; ++i) {
read(A[i]), read(B[i]), read(C[i]), read(D[i]);
if(C[i] > D[i]) swap(A[i], B[i]), swap(C[i], D[i]);
--deg[A[i]], ++deg[B[i]];
}
for(int i = 1; i <= n; ++i)
if(deg[i] % 2) return printf("NIE"), 0;
int l = 1, r = 1000, mid;
while(l < r) {
mid = (l + r) >> 1;
if(check(mid)) r = mid;
else l = mid+1;
}
printf("%d\n", l);
}

BZOJ 2095 [Poi2010]Bridges (二分+最大流判断混合图的欧拉回路)的更多相关文章

  1. bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]

    2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...

  2. BZOJ 2095: [Poi2010]Bridges

    2095: [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 869  Solved: 299[Submit][Stat ...

  3. 【刷题】BZOJ 2095 [Poi2010]Bridges

    Description YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛1 ...

  4. bzoj 2095 [Poi2010]Bridges 判断欧拉维护,最大流+二分

    [Poi2010]Bridges Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1448  Solved: 510[Submit][Status][D ...

  5. bzoj 2095: [Poi2010]Bridges(二分法+混合图的欧拉回路)

    [题意] 给定n点m边的无向图,对于边u,v,从u到v边权为c,从v到u的边权为d,问能够经过每条边一次且仅一次,且最大权值最小的欧拉回路. [思路] 二分答案mid,然后切断权值大于mid的边,原图 ...

  6. poj--1637--Sightseeing tour(网络流,最大流判断混合图是否存在欧拉图)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %I64d & %I64u Sub ...

  7. BZOJ.2095.[POI2010]Bridges(最大流ISAP 二分 欧拉回路)

    题目链接 最小化最大的一条边,二分答案.然后就变成了给一张无向图定向使其为欧拉回路 二分答案后对于一个位置的两条边可能都保留,即双向边,需要给它定向:可能只保留小的一条,即单向边,不需考虑 如何给它定 ...

  8. BZOJ 2095 [POI2010]Bridges (最大流、欧拉回路)

    洛谷上有这题,但是输出方案缺SPJ..(而且我也懒得输出方案了) 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2095 题解: 首先判 ...

  9. bzoj2095: [Poi2010]Bridges(二分+混合图求欧拉回路)

    传送门 这篇题解讲的真吼->这里 首先我们可以二分一个答案,然后把所有权值小于这个答案的都加入图中 那么问题就转化为一张混合图(既有有向边又有无向边)中是否存在欧拉回路 首先 无向图存在欧拉回路 ...

随机推荐

  1. [知乎]鲲鹏920对比intel8180

    作者:韩朴宇链接:https://www.zhihu.com/question/308298687/answer/568737742来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请 ...

  2. Jmeter plugins 之 Perfmon Metrics Collector(服务器性能监控)

    客户端(Jmeter端) 1.安装plugins manager,然后安装  2.添加listener-(第1步成功后才可看到此功能)  服务端:(要监控的服务器) 1.下载ServerAgent,并 ...

  3. FishingMaster(HDU-6709)【贪心】

    题目链接:https://vjudge.net/problem/HDU-6709 题意:一个人要抓n条鱼,每抓一条鱼用时K,每烹饪一条鱼用时a[i],抓鱼的过程不能被打断,烹饪鱼的时候可以抓鱼,也可以 ...

  4. yii2 migrate 数据库迁移的简单分享

    开发中经常会用到的方法小结: 1../yii migrate xxx_xx 在表中插入某字段 : public function up() {$this->addColumn('{{applic ...

  5. 将dubbo中使用的动态代理作为工具类

    ReflectUtils package per.qiao.util.javassistUtil; import java.lang.reflect.Constructor; import java. ...

  6. Go学习路径--相关基础

    现在开始接触Go一段时间了,基本路径就是看基础学习材料,开始写项目,有问题找解决问题的方法.这里记录一下学习过程. go相关文章 Golang适合高并发场景的原因分析 go build 不同系统下的可 ...

  7. rgba()和opacity的比较(转)

    https://blog.csdn.net/u014150409/article/details/44906767

  8. sql 计算奇数还是偶数

    & 运算符来判断奇数还是偶数 sql判断奇数还是偶数 3&1 返回 1 2&1  返回0 0&1 返回 0

  9. hdu 6216 A Cubic number and A Cubic Number

    题意:给定一个素数,判定它是不是两个立方数之差. 题解:对于a^3+b^3=(a-b)(a^2-a*b+b^2),而一个素数的因子只有1和其本身,在加上(a^2-a*b+b^2)一定是大于1的,所以只 ...

  10. 在论坛中出现的比较难的sql问题:9(触发器专题 插入数据自动更新表数据)

    原文:在论坛中出现的比较难的sql问题:9(触发器专题 插入数据自动更新表数据) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. 所 ...