2018 南京网络预赛Sum - 线性筛
题意
定义 $f(x)$ 为满足以下条件的有序二元组 $(a, b)$ 的方案数(即 $(a, b)$ 与 $(b, a)$ 被认为是不同的方案):
- $x= ab$
- $a$ 和 $b$ 均无平方因子(即因子中没有除1之外的完全平方数)
求 $\displaystyle \sum_{i=1}^nf(i), 1 \leq n\leq 2 \times 10^7$.
分析
显然,$f(n)$ 是积性函数,考虑线性筛。
- 当 $x$为素数时, $f(x)=2$,即 $(1,x)$ 和 $(x,1)$;
- 当 $x$ 的最小质因子为 $p$,且 $p \nmid \frac{x}{p}$ 时,$f(x) = f(p)f(\frac{x}{p}) = 2f(\frac{x}{p})$;
- 当 $x$ 的最小的质因数为 $p$,且 $p \mid \frac{x}{p}$
- 如果 $p \mid \frac{x}{p^2}$,那么 $x$ 中的 $p$ 的指数至少为3,即不管如何划分 $(a, b)$,两个数中一定有一个数其 $p$ 的指数大于等于2,即不存在合法的方案
- 否则, $x$中 $p$ 的指数就为2,把这两个 $p$ 分别分给 $a$ 和 $b$,剩余的 $\frac{x}{p^2}$就是一个子问题,即 $f(x) = f(\frac{x}{p^2}) = f(\frac{x}{p})f(\frac{1}{p}) = f(\frac{x}{p})/2$
#include<bits/stdc++.h>
using namespace std; const int maxn = 2e7 + ;
int n;
int vis[maxn], primes[maxn], primeCnt;
int f[maxn], s[maxn]; //f(i)的前缀和 void seive()
{
f[] = ;
for(int i = ;i <= maxn;i++)
{
if(!vis[i])
{
primes[++primeCnt] = i;
f[i] = ;
}
for(int j=;j <= primeCnt && (long long)i * primes[j] <= maxn;j++)
{
vis[i *primes[j]] = true;
if(i % primes[j] == )
{
f[i *primes[j]] = (i / primes[j] % primes[j] == )? : f[i/primes[j]];
break;
}
else f[i * primes[j]] = f[i] * ;
}
}
} int main()
{
seive();
for(int i = ;i <= maxn;i++) s[i] = s[i-]+f[i]; int T;
scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
printf("%d\n", s[n]);
}
}
参考链接:https://oi.men.ci/jsk-30999/#%D0%B4%D0%B0%D0%BB%D0%B5%D0%B5
2018 南京网络预赛Sum - 线性筛的更多相关文章
- 2018 南京网络预赛Sum ——莫比乌斯反演
题意 设 $f(n)$ 为 $n=ab$ 的方案数,其中 $a,b$ 为无平方因子数.求 $\displaystyle \sum_{i=1}^nf(i)$,$n \leq 2e7$. 分析 显然,可 ...
- 2018 南京网络预赛Sum - 离线分段打表
题意 设 $f(n)$ 为 $n=ab$ 的方案数,其中 $a,b$ 为无平方因子数. 例如,$f(6)=4$,因为 $6 = 1 \times 6 = 2 \times 3 = 3 \times 2 ...
- ACM-ICPC 2018 南京赛区网络预赛 J题Sum(线性筛素数)
题目链接:https://nanti.jisuanke.com/t/30999 参考自博客:https://kuangbin.github.io/2018/09/01/2018-ACM-ICPC-Na ...
- 计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]
题目链接:https://nanti.jisuanke.com/t/30999 样例输入258 样例输出814 题意: squarefree数是指不含有完全平方数( 1 除外)因子的数, 现在一个数字 ...
- ACM-ICPC 2018 南京赛区网络预赛 Sum
A square-free integer is an integer which is indivisible by any square number except 11. For example ...
- ACM-ICPC 2018 南京赛区网络预赛Sum,线性筛处理积性函数
SUM 题意:f(n)是n可以拆成多少组n=a*b,a和b都是不包含平方因子的方案数目,对于a!=b,n=a*b和n=b*a算两种方案,求∑i=1nf(i) 首先我们可以知道,n=1时f(1)=1, ...
- 2018 南京预选赛 J Sum ( 欧拉素数筛 、Square-free Number、DP )
题目链接 题意 : 定义不能被平方数整除的数为 Square-free Number 定义 F(i) = 有几对不同的 a 和 b 使得 i = a * b 且 a .b 都是 Square-free ...
- ACM-ICPC 2018 南京网络赛
题目顺序:A C E G I J L A. An Olympian Math Problem 打表,找规律,发现答案为n-1 C. GDY 题意: m张卡片,标号1-13: n个玩家,标号1-n:每个 ...
- 2018南京网络赛 - Skr 回文树
题意:求本质不同的回文串(大整数)的数字和 由回文树的性质可知贡献只在首次进入某个新节点时产生 那么只需由pos和len算出距离把左边右边删掉再算好base重复\(O(n)\)次即可 位移那段写的略微 ...
随机推荐
- redis 实现登陆次数限制
title: redis-login-limitation 利用 redis 实现登陆次数限制, 注解 + aop, 核心代码很简单. 基本思路 比如希望达到的要求是这样: 在 1min 内登陆异常次 ...
- SQLite之rowid与sqlite3_last_insert_rowid()
//返回最后一次insert的rowid,如果没有插入就返回0 (DB session断开后也返回0, 是保存在进程的内存中) SELECT LAST_INSERT_ROWID(); //找到最大的r ...
- 脉脉的一道网红Java面试题
题目如下: public class Test { public static void main(String[] args) { int a = 10; int b = 10; // 需要在met ...
- BP(back propagation)误差逆传播神经网络
[学习笔记] BP神经网络是一种按误差反向传播的神经网络,它的基本思想还是梯度下降法,中间隐含层的误差和最后一层的误差存在一定的数学关系,(可以计算出来),就像误差被反向传回来了,所以顾名思义BP.想 ...
- 剑指offer60:把二叉树打印成多行。上到下按层打印二叉树。
1 题目描述 从上到下按层打印二叉树,同一层结点从左至右输出.每一层输出一行. 2 思路和方法 vector变量存储每一层的元素vector<vector<int> > ans ...
- 人机交互技术 Week 1_人机交互概述
HCI Week 1_Introduction 18-19学年春夏学期选修了计院万华根老师的人机交互技术课程,老师由于知识产权相关原因不能提供课件,故尽可能对课程内容做详尽的课堂笔记以供复习,如有不妥 ...
- LIUNX随堂学习-3 权限
1.权限分为三类:读r,写w,执行x 2.读r:可以ls改目录下的子文件名,子目录名 写w:可以在该目录下创建.删除.重命名 执行x:可以cd到该目录下 3. ll (ls -l) 下详细信息的意义 ...
- WUSTOJ 1232: 矩阵乘法(C)
1232: 矩阵乘法 Time Limit: 1 Sec Memory Limit: 128 MB 64bit IO Format: %lld Description 小明明正在学习线性代数,老师布置 ...
- vi 使用系统剪贴板(clipboard)
ref : https://www.jianshu.com/p/771b95e34293 http://www.bubuko.com/infodetail-469867.html 在vi中,如果编译时 ...
- 监听lsnrctl status查询状态报错linux error 111:connection refused
报错现象 今天给客户一个单实例环境配置监听,创建正常,查询状态异常报错 tns tns tns linux error :connection refused 匹配MOS Starting TNS L ...