排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合定义及公式

排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

举例:

C:指从几个中选取出来,不排列,只组合

如C2 4是指从4个中选2个,不管它们的内部的顺序

C2 4=4×3/2×1=6

A:指把几个不但选出来,还要进行排列

如A2 4是指从四个中选出2个来,而且对他们的顺序是有要求的,顺序不一样,结果就是不一样的

A2 4=4×3=12

排列组合基本计数原理

⑴加法原理和分类计数法

⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

⑵乘法原理和分步计数法

⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

⒉合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

3.与后来的离散型随机变量也有密切相关。

排列、组合、二项式定理公式口诀:

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

原文:http://www.gaosan.com/gaokao/221845.html

排列组合C、A的更多相关文章

  1. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  2. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

  3. 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  4. 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  5. 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  6. hdu1521 排列组合(指数型母函数)

    题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数.         (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...

  7. [leetcode] 题型整理之排列组合

    一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...

  8. 排列组合算法(PHP)

    用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...

  9. iOS多线程中,队列和执行的排列组合结果分析

    本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...

  10. leetcode-Combinations 复习复习排列组合

    Combinations 题意: 根据给定的n和k,生成从1到n范围内长度为k的排列组合 示例: n=4 k=2 [[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2 ...

随机推荐

  1. 后台返回数据为map集合,前端js处理方法

    当后台返回的数据不是json而是map集合的时候,前端js中处理就将其看作是一个数组,例如后台返回的代码入下: Map<String, String> result = new HashM ...

  2. (八)springMvc 的参数绑定

    参数绑定 将客户端传来的 key/value 数据,绑定到 Controller 参数的过程 : 这一过程发生在调用 处理器适配器 的时候,spring 会去调用 参数绑定 组件,我使用的版本(4.5 ...

  3. Django 在Python3.5 下报 没有模块MySQLdb

    在整个项目站点下的__init__.py 文件里(即和setting.py在同一个文件下)写入以下代码: import pymysql pymysql.install_as_MySQLdb() 需要提 ...

  4. .Net C# EF database first connectionstring

    <connectionStrings> <add name="CupCreditCheckDB" connectionString="metadata= ...

  5. 守护服务Supervisor的安装和使用

    Supervisor(http://supervisord.org/)是用Python开发的一个client/server服务,是Linux/Unix系统下的一个进程管理工具,不支持Windows系统 ...

  6. django+mysql(1)

    报错误:mysqlclient 1.3.13 or newer is required; you have 0.9.3 第一种: django降到2.1.4版本就OK了 第二种(仍使用django 2 ...

  7. C# 委托 、事件、同步、异步知识点归纳

    一.委托 基本用法: 1.声明一个委托类型.委托就像是‘类'一样,声明了一种委托之后就可以创建多个具有此种特征的委托.(特征,指的是返回值.参数类型) public delegate void Som ...

  8. 【css】浅谈BFC

    定义: 块格式化上下文(Block Formatting Context,BFC) 是Web页面的可视化CSS渲染的一部分,是块盒子的布局过程发生的区域,也是浮动元素与其他元素交互的区域. BFC的布 ...

  9. Java 使用流读文本数据时乱码 解决方法

    一.问题描述 当我使用FileReader读取文本文件里的汉字时,读出来的是乱码.但为什么字符是正常的呢??? 二.原因探究 其根本原因在于编码标准不同.汉字采用gbk,而idea使用UTF-8.gb ...

  10. wepy 开发小程序, 为什么设置pages路径的时候总是找不到 js 文件?

    1,路径先检查仔细了 2,别说话,重新run 3,可能是版本问题,重新搭工程