排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合定义及公式

排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

举例:

C:指从几个中选取出来,不排列,只组合

如C2 4是指从4个中选2个,不管它们的内部的顺序

C2 4=4×3/2×1=6

A:指把几个不但选出来,还要进行排列

如A2 4是指从四个中选出2个来,而且对他们的顺序是有要求的,顺序不一样,结果就是不一样的

A2 4=4×3=12

排列组合基本计数原理

⑴加法原理和分类计数法

⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

⒉第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

⒊分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

⑵乘法原理和分步计数法

⒈ 乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×m3×…×mn种不同的方法。

⒉合理分步的要求

任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

3.与后来的离散型随机变量也有密切相关。

排列、组合、二项式定理公式口诀:

加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。两条性质两公式,函数赋值变换式。

原文:http://www.gaosan.com/gaokao/221845.html

排列组合C、A的更多相关文章

  1. 学习sql中的排列组合,在园子里搜着看于是。。。

    学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...

  2. .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)

    今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...

  3. 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  4. 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  5. 【原创】开源.NET排列组合组件KwCombinatorics使用(一)—组合生成

           本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...

  6. hdu1521 排列组合(指数型母函数)

    题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数.         (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...

  7. [leetcode] 题型整理之排列组合

    一般用dfs来做 最简单的一种: 17. Letter Combinations of a Phone Number Given a digit string, return all possible ...

  8. 排列组合算法(PHP)

    用php实现的排列组合算法.使用递归算法,效率低,胜在简单易懂.可对付元素不多的情况. //从$input数组中取$m个数的组合算法 function comb($input, $m) { if($m ...

  9. iOS多线程中,队列和执行的排列组合结果分析

    本文是对以往学习的多线程中知识点的一个整理. 多线程中的队列有:串行队列,并发队列,全局队列,主队列. 执行的方法有:同步执行和异步执行.那么两两一组合会有哪些注意事项呢? 如果不是在董铂然博客园看到 ...

  10. leetcode-Combinations 复习复习排列组合

    Combinations 题意: 根据给定的n和k,生成从1到n范围内长度为k的排列组合 示例: n=4 k=2 [[1, 2], [1, 3], [1, 4], [2, 1], [2, 3], [2 ...

随机推荐

  1. IDEA下tomcat启动后 server乱码,Tomcat Catalina Log乱码问题的解决

    如果你初接触Idea,一定会遇到控制台乱码的问题,这里和eclipse有点不一样,看如下办法: 乱码的根本原因:Windows系统的cmd是GBK编码的,所以IDEA的下方log输出的部分的编码也是G ...

  2. [Lua]LuaAPI整理

    ref :https://blog.csdn.net/ouyangshima/article/details/43339571   LUA和C/C++的沟通桥梁——栈 Lua生来就是为了和C交互的,因 ...

  3. webpack打包时删除console.log,和debugger

    开发过程中我们不可避免的需要console.log调试,然而在上线时如果不删除这些console.log可能会造成内存泄漏,因为console.log出来的变量是不会被GC的,webpack给我们提供 ...

  4. Guide 哥:有哪些程序员受用一生的好习惯?

    本文来自 Guide 哥开源的 Github 仓库 programmer-advancement:https://github.com/Snailclimb/programmer-advancemen ...

  5. Java多线程(八):ReentrantReadWriteLock

    读写锁ReentrantReadWriteLock概述 读写锁ReentrantReadWriteLock,使用它比ReentrantLock效率更高. 读写锁表示两个锁,一个是读操作相关的锁,称为共 ...

  6. Install CUDA 6.0 on Ubuntu 14.04 LTS

    Ubuntu 14.04 LTS is out, loads of new features have been added. Here are some procedures I followed ...

  7. pycharm 报错 ModuleNotFoundError: No module named 'distutils.core'

    之气的虚拟机不好使了,重新装了最新版本,安装了ubuntu18.4,然后安装pycharm,但新建项目的时候报错: ModuleNotFoundError: No module named 'dist ...

  8. FastJson学习:JSON格式字符串、JSON对象及JavaBean之间的相互转换

    当前台需要传送一系列相似数据到后端时,可以考虑将其组装成json数组对象,然后转化为json形式的字符串传输到后台 例如: nodes = $('#PmPbsSelect_tree').tree('g ...

  9. JAVA对ArrayList排序

    ava如何对ArrayList中对象按照该对象某属性排序 增加排序功能,打印时:输出学生对象的时候,需要先按照年龄排序,如果年龄相同,则按照姓名排序,如果姓名也相同,则按照学号排序. Code hig ...

  10. 使用jMeter构造大量并发的随机HTTP请求

    在前一篇文章使用jMeter构造大量并发HTTP请求进行微服务性能测试里,我介绍了如何用jMeter构造并发HTTP请求.但是通过文中介绍的方式构造的并发请求,其请求参数都是硬编码的'Wang'. 有 ...