deep_learning_凹凸函数
什么是凸函数及如何判断一个函数是否是凸函数
t元j
一、什么是凸函数
对于一元函数f(xf(x),如果对于任意tϵ[0,1]tϵ[0,1]均满足:f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)≤tf(x1)+(1−t)f(x2),则称f(x)f(x)为凸函数(convex function)
如果对于任意tϵ(0,1)tϵ(0,1)均满足:f(tx1+(1−t)x2)<tf(x1)+(1−t)f(x2)f(tx1+(1−t)x2)<tf(x1)+(1−t)f(x2),则称f(x)f(x)为严格凸函数(convex function)
我们可以从几何上直观地理解凸函数的特点,凸函数的割线在函数曲线的上方,如图1所示:

上面的公式,完全可以推广到多元函数。在数据科学的模型求解中,如果优化的目标函数是凸函数,则局部极小值就是全局最小值。这也意味着我们求得的模型是全局最优的,不会陷入到局部最优值。例如支持向量机的目标函数||w||2/2||w||2/2就是一个凸函数。
二、如何来判断一个函数是否是凸函数呢?
对于一元函数f(x)f(x),我们可以通过其二阶导数f′′(x)f″(x) 的符号来判断。如果函数的二阶导数总是非负,即f′′(x)≥0f″(x)≥0 ,则f(x)f(x)是凸函数
对于多元函数f(X)f(X),我们可以通过其Hessian矩阵(Hessian矩阵是由多元函数的二阶导数组成的方阵)的正定性来判断。如果Hessian矩阵是半正定矩阵,则是f(X)f(X)凸函数
三、Jensen不等式
对于凸函数,我们可以推广出一个重要的不等式,即Jensen不等式。如果 f 是凸函数,X是随机变量,那么f(E(X))≤E(f(X))f(E(X))≤E(f(X)),上式就是Jensen不等式的一般形式
我们还可以看它的另一种描述。假设有 n 个样本{x1,x2,...,xn}{x1,x2,...,xn}和对应的权重{α1,α2,...,αn}{α1,α2,...,αn},权重满足ai⩾0,∑αi=1ai⩾0,∑αi=1,对于凸函数 f,以下不等式成立:
f(∑ni=1αixi)≤∑ni=1αif(xi)
deep_learning_凹凸函数的更多相关文章
- Coursera Machine Learning : Regression 简单回归
简单回归 这里以房价预测作为例子来说明:这里有一批关于房屋销售记录的历史数据,知道房价和房子的大小.接下来就根据房子的大小来预测下房价. 简单线性回归,如下图所示,找到一条线,大体描述了历史数据的走势 ...
- EM算法笔记
EM算法在很多地方都用使用到,比如简单的K-means算法,还有在隐马尔可夫里面,也涉及到了EM算法,可见EM算法在机器学习领域的重要地位.在这里就写一下我对于EM算法的一些理解笔记.后续有新的理解也 ...
- EM算法(Expectation Maximization Algorithm)
EM算法(Expectation Maximization Algorithm) 1. 前言 这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...
- <转>E-M算法
转自http://blog.csdn.net/zouxy09/article/details/8537620/ 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊, ...
- 对dy和Δy的浅薄理解
一.导数定义 当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0) ...
- 《zw版·Halcon-delphi系列原创教程》 Halcon分类函数016,xld,xld轮廓
<zw版·Halcon-delphi系列原创教程> Halcon分类函数016,xld,xld轮廓 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换:“ ...
- 《zw版·Halcon-delphi系列原创教程》 Halcon分类函数012,polygon,多边形
<zw版·Halcon-delphi系列原创教程> Halcon分类函数012,polygon,多边形 为方便阅读,在不影响说明的前提下,笔者对函数进行了简化: :: 用符号“**”,替换 ...
- 《zw版·delphi与halcon系列原创教程》zw版_THOperatorSetX控件函数列表 v11中文增强版
<zw版·delphi与halcon系列原创教程>zw版_THOperatorSetX控件函数列表v11中文增强版 Halcon虽然庞大,光HALCONXLib_TLB.pas文件,源码就 ...
- Shader中贴图知识汇总: 漫反射贴图、凹凸贴图、高光贴图、 AO贴图、环境贴图、 光照纹理及细节贴图
原文过于冗余,精读后做了部分简化与测试实践,原文地址:http://www.j2megame.com/html/xwzx/ty/2571.html http://www.cnblogs.com/z ...
随机推荐
- jsp+UEditor粘贴word
最近公司做项目需要实现一个功能,在网页富文本编辑器中实现粘贴Word图文的功能. 我们在网站中使用的Web编辑器比较多,都是根据用户需求来选择的.目前还没有固定哪一个编辑器 有时候用的是UEditor ...
- sudo: unable to execute ./xxx.py: no such file or directory
$ ./mk_dataset.py -bash: ./mk_dataset.py: /home/ocean1101/anaconda3/bin/python^M: bad interpreter: N ...
- idea 中的new file 没有jsp
idea 的new file中没有你需要的文件,原因是IDEA认为当前包下不应该创建该文件,以就没有创建该文件的选项. 以jsp 文件为例.其他文件类似. 解决方法: File ---> pro ...
- 【Flink】flink执行jar报错:java.io.IOException: Error opening the Input Split file 或者 java.io.FileNotFoundException
报错内容 flink执行jar时,报如下错误: org.apache.flink.client.program.ProgramInvocationException: Job failed. (Job ...
- luffycity项目开发
一. 首页的页脚 子组件Footer.vue文件: <template> <div class="footer"> <ul> <li> ...
- 安装heat
在控制节点上执行 controller-heat(){mysql -uroot -p${MYSQL_PASSWD} << EOF DROP DATABASE IF EXISTS heat; ...
- NumSharp的数组切片功能
NumSharp的数组切片功能 原文地址:https://medium.com/scisharp/slicing-in-numsharp-e56c46826630 翻译初稿(英文水平有限,请多包涵): ...
- python 下安装pymysql数据库
两种方法来安装pymysql 方法一.利用命令来安装 安装:python37 -m pip install pymysql 升级:python37 -m pip install pymysql --u ...
- linux用户和组 之 用户管理
一. linux 用户和组的基本介绍 1.linux下 有三种用户: 1. root: 权限最大的. 2. 系统用户: UID小于1000的.系统服务管理用户,一般是不允许登录系统的.(比如mysql ...
- C++str.Format
C++应该没有这个函数,说的是Format是在MFC程序里看见的 Format是CString字符串类的成员函数CString::Format( LPCTSTR lpszFormat, ... ); ...