tf.contrib.layers.fully_connected参数笔记
tf.contrib.layers.fully_connected
添加完全连接的图层。
tf.contrib.layers.fully_connected(
inputs,
num_outputs,
activation_fn=tf.nn.relu,
normalizer_fn=None,
normalizer_params=None,
weights_initializer=initializers.xavier_initializer(),
weights_regularizer=None,
biases_initializer=tf.zeros_initializer(),
biases_regularizer=None,
reuse=None,
variables_collections=None,
outputs_collections=None,
trainable=True,
scope=None
)
fully_connected创建一个名为的变量weights,表示一个完全连接的权重矩阵,乘以它inputs产生一个 Tensor隐藏单位。
如果normalizer_fn提供了a (例如 batch_norm),则应用它。否则,如果normalizer_fn为None且biases_initializer提供了a,
biases则将创建变量并添加隐藏单位。最后,如果activation_fn不是None,它也会应用于隐藏单位。
inputs:至少等级2的张量和最后一个维度的静态值; 即[batch_size, depth],[None, None, None, channels]。num_outputs:整数或长整数,图层中的输出单位数。activation_fn:激活功能。默认值是ReLU功能。将其明确设置为“无”以跳过它并保持线性激活。normalizer_fn:使用标准化功能代替biases。如果normalizer_fn提供biases_initializer,biases_regularizer则忽略并且biases不创建也不添加。没有规范化器功能,默认设置为“无”normalizer_params:规范化函数参数。weights_initializer:权重的初始化程序。weights_regularizer:可选的权重正则化器。biases_initializer:偏见的初始化程序。如果没有跳过偏见。biases_regularizer:偏见的可选正则化器。reuse:是否应重用图层及其变量。必须给出能够重用层范围的能力。variables_collections:所有变量的集合的可选列表或包含每个变量的不同集合列表的字典。outputs_collections:用于添加输出的集合。trainable:如果True还将变量添加到图表集合中GraphKeys.TRAINABLE_VARIABLES(请参阅tf.Variable)。scope:variable_scope的可选范围。
参考: https://tensorflow.google.cn/api_docs/python/tf/contrib/layers/fully_connected
tf.contrib.layers.fully_connected参数笔记的更多相关文章
- 第十六节,使用函数封装库tf.contrib.layers
这一节,介绍TensorFlow中的一个封装好的高级库,里面有前面讲过的很多函数的高级封装,使用这个高级库来开发程序将会提高效率. 我们改写第十三节的程序,卷积函数我们使用tf.contrib.lay ...
- TensorFlow——tf.contrib.layers库中的相关API
在TensorFlow中封装好了一个高级库,tf.contrib.layers库封装了很多的函数,使用这个高级库来开发将会提高效率,卷积函数使用tf.contrib.layers.conv2d,池化函 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- TensorFlow:tf.contrib.layers.xavier_initializer
xavier_initializer( uniform=True, seed=None, dtype=tf.float32 ) 该函数返回一个用于初始化权重的初始化程序 “Xavier” .这个初始化 ...
- tf.contrib.layers.xavier_initializer
https://blog.csdn.net/yinruiyang94/article/details/78354257xavier_initializer( uniform=True, seed=No ...
- 学习笔记TF044:TF.Contrib组件、统计分布、Layer、性能分析器tfprof
TF.Contrib,开源社区贡献,新功能,内外部测试,根据反馈意见改进性能,改善API友好度,API稳定后,移到TensorFlow核心模块.生产代码,以最新官方教程和API指南参考. 统计分布.T ...
- 关于tensorflow里面的tf.contrib.rnn.BasicLSTMCell 中num_units参数问题
这里的num_units参数并不是指这一层油多少个相互独立的时序lstm,而是lstm单元内部的几个门的参数,这几个门其实内部是一个神经网络,答案来自知乎: class TRNNConfig(obje ...
- TensorFlow高级API(tf.contrib.learn)及可视化工具TensorBoard的使用
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载cs ...
- TensorFlow高层次机器学习API (tf.contrib.learn)
TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格 ...
随机推荐
- ASP.Net参数传递小结
同一页面.aspx与.aspx.cs之间参数传递 1. .aspx.cs接收.aspx的参数:由于.aspx和.aspx.cs为继承关系,所以.aspx.cs可以直接对.aspx中的ID进行值提取,具 ...
- 內嵌html字符串顯示
前端:System.Web.HttpUtility.HtmlEncode() @Html.Raw(htmlStr) 後端:System.Net.WebUtility.HtmlDe ...
- webservice三要素
1. 2. 3.
- WEB自动化测试(UFT与Selenium)课程及视频教程
自动化测试UFT与Selenium详细视频教程科目如下: 1.自动化测试基础-2.UFT自动化测试详解-3.UFT高级测试开发-4.自动化测试框架设计-5.UFT综合实战-6自动化测试-Seleniu ...
- 提高RabbitMQ的File descriptors
一.修改 linux ulimit 二. [root@rabbitmq rabbitmq]# ulimit -n 65535 [root@rabbitmq rabbitmq]# ulimit -n 6 ...
- PHP 之验证码类封装
一.效果图 二.类代码 <?php /** * Created by PhpStorm. * User: Yang * Date: 2019/8/13 * Time: 10:51 */ clas ...
- open suse tumbleweed安装记录
zypper install imagewriter cmake blender fontforge gimp digikam inkscape kontact pitivi smplayer si ...
- 深入分析JAVA IO(BIO、NIO、AIO)
IO的基本常识 1.同步 用户进程触发IO操作并等待或者轮询的去查看IO操作是否完成 2.异步 用户触发IO操作以后,可以干别的事,IO操作完成以后再通知当前线程继续处理 3.阻塞 当一个线程调用 r ...
- 手游折扣app票选结果公布哪个好哪个靠谱一目了然
2018年,是中国改革开放40年,也是中国互联网20年.“互联网推动了精神文明向更高水平的迈进,实现人的价值第一,创造美好生活,从生产高于生活.艺术高于成活,转向发现与实现生活本身美好,让想象成真.如 ...
- jinja2-宏,include, import
一 宏 宏类似常规编程语言中的函数.它们用于把常用行为作为可重用的函数,取代 手动重复的工作.如果宏在不同的模板中定义,你需要首先使用 import,比如 {% macro input(name, v ...