Contest Info


[Practice Link](https://www.jisuanke.com/contest/2290?view=challenges)

Solved A B C D E F G H I J K L M
8/13 O - - O - - O O O O O - O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. PERFECT NUMBER PROBLEM

签到题。

#include <bits/stdc++.h>
using namespace std; int main() {
int a[] = {
6, 28, 496, 8128, 33550336
};
for (int i = 0; i < 5; ++i) {
printf("%d\n", a[i]);
}
return 0;
}

D. Match Stick Game

G. tsy's number

H. Coloring Game'

I. Max answer

题意:

定义一个区间\([l, r]\)的值为:

\[\begin{eqnarray*}
f(l, r) = (max_{i = l}^r a_i) \cdot (\sum\limits_{i = l}^r a_i)
\end{eqnarray*}
\]

思路一:

单调栈求出当前点左边第一个比它小的位置,当前点右边第一个比它小的位置。

然后就算出管辖范围,然后线段树维护一下最大最小区间前后缀即可。

代码一:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
#define INF 0x3f3f3f3f
#define INFLL 0x3f3f3f3f3f3f3f3f
int n, a[N];
ll sum[N];
int f[N], g[N];
int Sta[N], top; struct SEG {
struct node {
ll Max, Min;
node () {
Min = INFLL;
Max = -INFLL;
}
node (ll Max, ll Min) : Max(Max), Min(Min) {}
node operator + (const node &other) const {
node res = node();
res.Max = max(Max, other.Max);
res.Min = min(Min, other.Min);
return res;
}
}t[N << 2], res;
void build(int id, int l, int r) {
if (l == r) {
t[id] = node(sum[l], sum[l]);
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
t[id] = t[id << 1] + t[id << 1 | 1];
}
void query(int id, int l, int r, int ql, int qr) {
if (ql > qr) {
return;
}
if (l >= ql && r <= qr) {
res = res + t[id];
return;
}
int mid = (l + r) >> 1;
if (ql <= mid) query(id << 1, l, mid, ql, qr);
if (qr > mid) query(id << 1 | 1, mid + 1, r, ql, qr);
}
}seg; int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
}
seg.build(1, 1, n);
ll res = 0; a[0] = a[n + 1] = -INF;
top = 0;
Sta[++top] = 0;
for (int i = 1; i <= n; ++i) {
while (a[i] <= a[Sta[top]]) {
--top;
}
f[i] = Sta[top];
Sta[++top] = i;
} top = 0;
Sta[++top] = n + 1;
for (int i = n; i >= 1; --i) {
while (a[i] <= a[Sta[top]]) {
--top;
}
g[i] = Sta[top];
Sta[++top] = i;
}
// for (int i = 1; i <= n; ++i) {
// printf("%d %d %d\n", i, f[i], g[i]);
// }
for (int i = 1; i <= n; ++i) {
if (a[i] == 0) {
continue;
} else if (a[i] < 0) {
seg.res = SEG::node();
ll x = 0, y = 0;
seg.query(1, 1, n, f[i], i);
if (f[i] == 0) {
x = max(x, seg.res.Max);
} else {
x = seg.res.Max;
}
seg.res = SEG::node();
seg.query(1, 1, n, i, g[i] - 1);
y = seg.res.Min;
res = max(res, (y - x) * a[i]);
} else {
seg.res = SEG::node();
ll x = 0, y = 0;
seg.query(1, 1, n, f[i], i);
if (f[i] == 0) {
x = min(x, seg.res.Min);
} else {
x = seg.res.Min;
}
seg.res = SEG::node();
seg.query(1, 1, n, i, g[i] - 1);
y = seg.res.Max;
res = max(res, (y - x) * a[i]);
}
} printf("%lld\n", res);
}
return 0;
}

思路二:

建出笛卡尔树,然后就确定了区间最小值,再考虑中序遍历是原序列。

那么左右子树分别维护区间和、区间最大最小前后缀,然后向上统计答案并合并

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
#define INF 0x3f3f3f3f
int n, a[N];
ll res; struct Cartesian_Tree {
struct node {
int id, val, fa;
// 0 前缀最值
// 1 后缀最值
ll Min[2], Max[2], sum;
int son[2];
node() {}
node (int id, int val, int fa) : id(id), val(val), fa(fa) {
memset(son, 0, sizeof son);
memset(Min, 0, sizeof Min);
memset(Max, 0, sizeof Max);
sum = 0;
}
bool operator < (const node &other) const {
return id < other.id;
} }t[N];
int root;
void init() {
t[0] = node(0, -INF, 0);
}
void build(int n, int *a) {
for (int i = 1; i <= n; ++i) {
t[i] = node(i, a[i], 0);
}
for (int i = 1; i <= n; ++i) {
int k = i - 1; while (t[k].val > t[i].val) {
k = t[k].fa;
} t[i].son[0] = t[k].son[1];
t[k].son[1] = i;
t[i].fa = k;
t[t[i].son[0]].fa = i;
}
root = t[0].son[1];
}
void DFS(int u) {
if (!u) return;
int ls = t[u].son[0], rs = t[u].son[1];
DFS(ls); DFS(rs);
res = max(res, t[u].val * (t[u].val + t[ls].Min[1] + t[rs].Min[0]));
res = max(res, t[u].val * (t[u].val + t[ls].Max[1] + t[rs].Max[0]));
t[u].sum = t[ls].sum + t[rs].sum + t[u].val;
t[u].Min[0] = min(t[ls].Min[0], t[ls].sum + t[u].val + t[rs].Min[0]);
t[u].Min[1] = min(t[rs].Min[1], t[rs].sum + t[u].val + t[ls].Min[1]);
t[u].Max[0] = max(t[ls].Max[0], t[ls].sum + t[u].val + t[rs].Max[0]);
t[u].Max[1] = max(t[rs].Max[1], t[rs].sum + t[u].val + t[ls].Max[1]);
}
}CT; int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
res = -1e18;
CT.init();
CT.build(n, a);
CT.DFS(CT.root);
printf("%lld\n", res);
}
return 0;
}

J. Distance on the tree

K. MORE XOR

M. Subsequence

题意:

给出串\(S\),以及若干串\(T_i\),每次询问\(T_i\)是否是\(S\)的一个子序列。

思路:

建出序列自动机,暴力跑即可。

时间复杂度:\(\mathcal{O}(26|S| + \sum T_i)\)

代码:

#include <bits/stdc++.h>
using namespace std; #define N 100010
int n, m, q;
char s[N], t[N];
int T[N][30], nx[30]; int main() {
while (scanf("%s", s + 1) != EOF) {
n = strlen(s + 1);
for (int i = 0; i < 30; ++i) nx[i] = n + 1;
for (int i = n; i >= 0; --i) {
for (int j = 0; j < 26; ++j) {
T[i][j] = nx[j];
}
if (i) {
nx[s[i] - 'a'] = i;
}
}
scanf("%d", &q);
while (q--) {
scanf("%s", t + 1);
m = strlen(t + 1);
int it = 0;
for (int i = 1; i <= m; ++i) {
it = T[it][t[i] - 'a'];
if (it == n + 1) break;
}
puts(it == n + 1 ? "NO" : "YES");
}
}
return 0;
}

The Preliminary Contest for ICPC China Nanchang National Invitational的更多相关文章

  1. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  4. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  6. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  7. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  8. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

  9. 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛

    Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...

随机推荐

  1. Angular 学习笔记 (Material table sticky 原理)

    更新 : 2019-12-03 今天踩坑了, sticky 了解不够深 refer http://www.ruanyifeng.com/blog/2019/11/css-position.html 阮 ...

  2. CCF 2017-03-1 分蛋糕

    CCF 2017-03-1 分蛋糕 题目 问题描述 小明今天生日,他有n块蛋糕要分给朋友们吃,这n块蛋糕(编号为1到n)的重量分别为a1, a2, -, an.小明想分给每个朋友至少重量为k的蛋糕.小 ...

  3. tslint 忽略格式检查

    // tslint:disable——忽略该行以下所有代码出现的错误提示,可以在文件首行添加达到忽略整个文件的格式提示 // tslint:enable——当前ts文件重新启用tslint// tsl ...

  4. 海量数据处理的 Top K 相关问题

    Top-k的最小堆解决方法 问题描述:有N(N>>10000)个整数,求出其中的前K个最大的数.(称作Top k或者Top 10) 问题分析:由于(1)输入的大量数据:(2)只要前K个,对 ...

  5. The version of SOS does not match the version of CLR you are debugging

    分析dump文件时,由于客户生产环境与分析dump文件的环境不一致,常常会出现下面的错误 The version of SOS does not match the version of CLR yo ...

  6. cocos creator按钮点击按钮弹起效果设置方法

    如图所示: 只要设置下button的Transition的属性为Scale即可,参数自己调整下.

  7. arm的基本介绍

    2440是arm9核,是基于v4 架构 6410是arm11核 基于v6架构 210是a8的核   基于v7架构 前面的是经典阵营,比较老.Arm11之后改为contex系列. Arm7的水准和M3相 ...

  8. Vue组件component创建及使用

    组件化与模块化的区别 什么是组件:组件的出现,就是为了拆分Vue实例的代码量,能够让我们以不同的组件,来划分不同的功能模块 ,将来我们需要什么功能,就可以去调用对应的组件即可 组件化与模块化的不同: ...

  9. javascript_08-while 和 do while

    while 和 do while for 当循环次数已知 while 先判断再执行 do while 先执行一次再判断 //1-100 之间所有数字的和 //while // var i = 1; / ...

  10. 【DRF框架】序列化组件——字段验证

    单个字段的验证 1.在序列化器里定义校验字段的钩子方法   validate_字段 2.获取字段的数据 3.验证不通过,抛出异常  raise serializers.ValidationError( ...