Contest Info


[Practice Link](https://www.jisuanke.com/contest/2290?view=challenges)

Solved A B C D E F G H I J K L M
8/13 O - - O - - O O O O O - O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. PERFECT NUMBER PROBLEM

签到题。

#include <bits/stdc++.h>
using namespace std; int main() {
int a[] = {
6, 28, 496, 8128, 33550336
};
for (int i = 0; i < 5; ++i) {
printf("%d\n", a[i]);
}
return 0;
}

D. Match Stick Game

G. tsy's number

H. Coloring Game'

I. Max answer

题意:

定义一个区间\([l, r]\)的值为:

\[\begin{eqnarray*}
f(l, r) = (max_{i = l}^r a_i) \cdot (\sum\limits_{i = l}^r a_i)
\end{eqnarray*}
\]

思路一:

单调栈求出当前点左边第一个比它小的位置,当前点右边第一个比它小的位置。

然后就算出管辖范围,然后线段树维护一下最大最小区间前后缀即可。

代码一:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
#define INF 0x3f3f3f3f
#define INFLL 0x3f3f3f3f3f3f3f3f
int n, a[N];
ll sum[N];
int f[N], g[N];
int Sta[N], top; struct SEG {
struct node {
ll Max, Min;
node () {
Min = INFLL;
Max = -INFLL;
}
node (ll Max, ll Min) : Max(Max), Min(Min) {}
node operator + (const node &other) const {
node res = node();
res.Max = max(Max, other.Max);
res.Min = min(Min, other.Min);
return res;
}
}t[N << 2], res;
void build(int id, int l, int r) {
if (l == r) {
t[id] = node(sum[l], sum[l]);
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
t[id] = t[id << 1] + t[id << 1 | 1];
}
void query(int id, int l, int r, int ql, int qr) {
if (ql > qr) {
return;
}
if (l >= ql && r <= qr) {
res = res + t[id];
return;
}
int mid = (l + r) >> 1;
if (ql <= mid) query(id << 1, l, mid, ql, qr);
if (qr > mid) query(id << 1 | 1, mid + 1, r, ql, qr);
}
}seg; int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
}
seg.build(1, 1, n);
ll res = 0; a[0] = a[n + 1] = -INF;
top = 0;
Sta[++top] = 0;
for (int i = 1; i <= n; ++i) {
while (a[i] <= a[Sta[top]]) {
--top;
}
f[i] = Sta[top];
Sta[++top] = i;
} top = 0;
Sta[++top] = n + 1;
for (int i = n; i >= 1; --i) {
while (a[i] <= a[Sta[top]]) {
--top;
}
g[i] = Sta[top];
Sta[++top] = i;
}
// for (int i = 1; i <= n; ++i) {
// printf("%d %d %d\n", i, f[i], g[i]);
// }
for (int i = 1; i <= n; ++i) {
if (a[i] == 0) {
continue;
} else if (a[i] < 0) {
seg.res = SEG::node();
ll x = 0, y = 0;
seg.query(1, 1, n, f[i], i);
if (f[i] == 0) {
x = max(x, seg.res.Max);
} else {
x = seg.res.Max;
}
seg.res = SEG::node();
seg.query(1, 1, n, i, g[i] - 1);
y = seg.res.Min;
res = max(res, (y - x) * a[i]);
} else {
seg.res = SEG::node();
ll x = 0, y = 0;
seg.query(1, 1, n, f[i], i);
if (f[i] == 0) {
x = min(x, seg.res.Min);
} else {
x = seg.res.Min;
}
seg.res = SEG::node();
seg.query(1, 1, n, i, g[i] - 1);
y = seg.res.Max;
res = max(res, (y - x) * a[i]);
}
} printf("%lld\n", res);
}
return 0;
}

思路二:

建出笛卡尔树,然后就确定了区间最小值,再考虑中序遍历是原序列。

那么左右子树分别维护区间和、区间最大最小前后缀,然后向上统计答案并合并

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
#define INF 0x3f3f3f3f
int n, a[N];
ll res; struct Cartesian_Tree {
struct node {
int id, val, fa;
// 0 前缀最值
// 1 后缀最值
ll Min[2], Max[2], sum;
int son[2];
node() {}
node (int id, int val, int fa) : id(id), val(val), fa(fa) {
memset(son, 0, sizeof son);
memset(Min, 0, sizeof Min);
memset(Max, 0, sizeof Max);
sum = 0;
}
bool operator < (const node &other) const {
return id < other.id;
} }t[N];
int root;
void init() {
t[0] = node(0, -INF, 0);
}
void build(int n, int *a) {
for (int i = 1; i <= n; ++i) {
t[i] = node(i, a[i], 0);
}
for (int i = 1; i <= n; ++i) {
int k = i - 1; while (t[k].val > t[i].val) {
k = t[k].fa;
} t[i].son[0] = t[k].son[1];
t[k].son[1] = i;
t[i].fa = k;
t[t[i].son[0]].fa = i;
}
root = t[0].son[1];
}
void DFS(int u) {
if (!u) return;
int ls = t[u].son[0], rs = t[u].son[1];
DFS(ls); DFS(rs);
res = max(res, t[u].val * (t[u].val + t[ls].Min[1] + t[rs].Min[0]));
res = max(res, t[u].val * (t[u].val + t[ls].Max[1] + t[rs].Max[0]));
t[u].sum = t[ls].sum + t[rs].sum + t[u].val;
t[u].Min[0] = min(t[ls].Min[0], t[ls].sum + t[u].val + t[rs].Min[0]);
t[u].Min[1] = min(t[rs].Min[1], t[rs].sum + t[u].val + t[ls].Min[1]);
t[u].Max[0] = max(t[ls].Max[0], t[ls].sum + t[u].val + t[rs].Max[0]);
t[u].Max[1] = max(t[rs].Max[1], t[rs].sum + t[u].val + t[ls].Max[1]);
}
}CT; int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
res = -1e18;
CT.init();
CT.build(n, a);
CT.DFS(CT.root);
printf("%lld\n", res);
}
return 0;
}

J. Distance on the tree

K. MORE XOR

M. Subsequence

题意:

给出串\(S\),以及若干串\(T_i\),每次询问\(T_i\)是否是\(S\)的一个子序列。

思路:

建出序列自动机,暴力跑即可。

时间复杂度:\(\mathcal{O}(26|S| + \sum T_i)\)

代码:

#include <bits/stdc++.h>
using namespace std; #define N 100010
int n, m, q;
char s[N], t[N];
int T[N][30], nx[30]; int main() {
while (scanf("%s", s + 1) != EOF) {
n = strlen(s + 1);
for (int i = 0; i < 30; ++i) nx[i] = n + 1;
for (int i = n; i >= 0; --i) {
for (int j = 0; j < 26; ++j) {
T[i][j] = nx[j];
}
if (i) {
nx[s[i] - 'a'] = i;
}
}
scanf("%d", &q);
while (q--) {
scanf("%s", t + 1);
m = strlen(t + 1);
int it = 0;
for (int i = 1; i <= m; ++i) {
it = T[it][t[i] - 'a'];
if (it == n + 1) break;
}
puts(it == n + 1 ? "NO" : "YES");
}
}
return 0;
}

The Preliminary Contest for ICPC China Nanchang National Invitational的更多相关文章

  1. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  4. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  6. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  7. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  8. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

  9. 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛

    Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...

随机推荐

  1. 【HC89S003F4开发板】 3串口调试

    HC89S003F4开发板串口调试 使用资料自带的demo 主程序 /************************************系统初始化************************ ...

  2. 从其他数据库迁移到MySQL及MySQL特点

    从其他数据库迁移到MySQL Oracle,SQL Server迁移到MySQL 一些变化 不再使用存储过程.视图.定时作业 表结构变更,如采用自增id做主键,以及其他语法变更 业务SQL改造,不使用 ...

  3. Scratch编程与高中数学算法初步

    scratch编程与高中数学算法初步 一提到编程,大家可能觉得晦涩难懂,没有一定的英语和数学思维基础的人,一大串的编程代码让人望而步,何况是中小学生.   Scratch是一款由麻省理工学院(MIT) ...

  4. Istio旨在成为容器化微服务的网格管道

    在精彩的软件容器世界中,当新项目涌现并解决你认为早已解决的问题时,这感觉就像地面在你的脚下不断地移动.在许多情况下,这些问题很久以前被解决,但现在的云原生架构正在推动着更大规模的应用程序部署,这就需要 ...

  5. vscode之万里挑一

    前置 我们经常在工作区中打开很多项目文件夹,找起来比较麻烦. 步骤

  6. ABP 基于DDD的.NET开发框架 学习(二)创建实体

    1.创建模型类打开.Core项目,新建新建一个项目文件夹(Demo);为了演示表关联及外键的使用,创建两个类:创建类ClothesCategoty.csusing Abp.Domain.Entitie ...

  7. J.U.C之Condition

    此篇博客所有源码均来自JDK 1.8 在没有Lock之前,我们使用synchronized来控制同步,配合Object的wait().notify()系列方法可以实现等待/通知模式.在Java SE5 ...

  8. iOS - FMDB数据库的使用

    下面不废话了直接上代码

  9. windows上安装python虚拟环境

    一.windows上安装python虚拟环境 1.安装pip install virtualenvvirtualenv --version 2.新建一个python虚拟环境virtual_env_01 ...

  10. Haddop完全分布式集群搭建

    hadoop完全分布式搭建 建议(遇到的坑): 如果自己用的操作系统就是linux,我本身是deepin系统,装了两台虚拟机,结果,用户名没有配置,导致启动不了,因为hadoop的master节点启动 ...