Contest Info


[Practice Link](https://www.jisuanke.com/contest/2290?view=challenges)

Solved A B C D E F G H I J K L M
8/13 O - - O - - O O O O O - O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. PERFECT NUMBER PROBLEM

签到题。

#include <bits/stdc++.h>
using namespace std; int main() {
int a[] = {
6, 28, 496, 8128, 33550336
};
for (int i = 0; i < 5; ++i) {
printf("%d\n", a[i]);
}
return 0;
}

D. Match Stick Game

G. tsy's number

H. Coloring Game'

I. Max answer

题意:

定义一个区间\([l, r]\)的值为:

\[\begin{eqnarray*}
f(l, r) = (max_{i = l}^r a_i) \cdot (\sum\limits_{i = l}^r a_i)
\end{eqnarray*}
\]

思路一:

单调栈求出当前点左边第一个比它小的位置,当前点右边第一个比它小的位置。

然后就算出管辖范围,然后线段树维护一下最大最小区间前后缀即可。

代码一:

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
#define INF 0x3f3f3f3f
#define INFLL 0x3f3f3f3f3f3f3f3f
int n, a[N];
ll sum[N];
int f[N], g[N];
int Sta[N], top; struct SEG {
struct node {
ll Max, Min;
node () {
Min = INFLL;
Max = -INFLL;
}
node (ll Max, ll Min) : Max(Max), Min(Min) {}
node operator + (const node &other) const {
node res = node();
res.Max = max(Max, other.Max);
res.Min = min(Min, other.Min);
return res;
}
}t[N << 2], res;
void build(int id, int l, int r) {
if (l == r) {
t[id] = node(sum[l], sum[l]);
return;
}
int mid = (l + r) >> 1;
build(id << 1, l, mid);
build(id << 1 | 1, mid + 1, r);
t[id] = t[id << 1] + t[id << 1 | 1];
}
void query(int id, int l, int r, int ql, int qr) {
if (ql > qr) {
return;
}
if (l >= ql && r <= qr) {
res = res + t[id];
return;
}
int mid = (l + r) >> 1;
if (ql <= mid) query(id << 1, l, mid, ql, qr);
if (qr > mid) query(id << 1 | 1, mid + 1, r, ql, qr);
}
}seg; int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
for (int i = 1; i <= n; ++i) {
sum[i] = sum[i - 1] + a[i];
}
seg.build(1, 1, n);
ll res = 0; a[0] = a[n + 1] = -INF;
top = 0;
Sta[++top] = 0;
for (int i = 1; i <= n; ++i) {
while (a[i] <= a[Sta[top]]) {
--top;
}
f[i] = Sta[top];
Sta[++top] = i;
} top = 0;
Sta[++top] = n + 1;
for (int i = n; i >= 1; --i) {
while (a[i] <= a[Sta[top]]) {
--top;
}
g[i] = Sta[top];
Sta[++top] = i;
}
// for (int i = 1; i <= n; ++i) {
// printf("%d %d %d\n", i, f[i], g[i]);
// }
for (int i = 1; i <= n; ++i) {
if (a[i] == 0) {
continue;
} else if (a[i] < 0) {
seg.res = SEG::node();
ll x = 0, y = 0;
seg.query(1, 1, n, f[i], i);
if (f[i] == 0) {
x = max(x, seg.res.Max);
} else {
x = seg.res.Max;
}
seg.res = SEG::node();
seg.query(1, 1, n, i, g[i] - 1);
y = seg.res.Min;
res = max(res, (y - x) * a[i]);
} else {
seg.res = SEG::node();
ll x = 0, y = 0;
seg.query(1, 1, n, f[i], i);
if (f[i] == 0) {
x = min(x, seg.res.Min);
} else {
x = seg.res.Min;
}
seg.res = SEG::node();
seg.query(1, 1, n, i, g[i] - 1);
y = seg.res.Max;
res = max(res, (y - x) * a[i]);
}
} printf("%lld\n", res);
}
return 0;
}

思路二:

建出笛卡尔树,然后就确定了区间最小值,再考虑中序遍历是原序列。

那么左右子树分别维护区间和、区间最大最小前后缀,然后向上统计答案并合并

#include <bits/stdc++.h>
using namespace std; #define ll long long
#define N 500010
#define INF 0x3f3f3f3f
int n, a[N];
ll res; struct Cartesian_Tree {
struct node {
int id, val, fa;
// 0 前缀最值
// 1 后缀最值
ll Min[2], Max[2], sum;
int son[2];
node() {}
node (int id, int val, int fa) : id(id), val(val), fa(fa) {
memset(son, 0, sizeof son);
memset(Min, 0, sizeof Min);
memset(Max, 0, sizeof Max);
sum = 0;
}
bool operator < (const node &other) const {
return id < other.id;
} }t[N];
int root;
void init() {
t[0] = node(0, -INF, 0);
}
void build(int n, int *a) {
for (int i = 1; i <= n; ++i) {
t[i] = node(i, a[i], 0);
}
for (int i = 1; i <= n; ++i) {
int k = i - 1; while (t[k].val > t[i].val) {
k = t[k].fa;
} t[i].son[0] = t[k].son[1];
t[k].son[1] = i;
t[i].fa = k;
t[t[i].son[0]].fa = i;
}
root = t[0].son[1];
}
void DFS(int u) {
if (!u) return;
int ls = t[u].son[0], rs = t[u].son[1];
DFS(ls); DFS(rs);
res = max(res, t[u].val * (t[u].val + t[ls].Min[1] + t[rs].Min[0]));
res = max(res, t[u].val * (t[u].val + t[ls].Max[1] + t[rs].Max[0]));
t[u].sum = t[ls].sum + t[rs].sum + t[u].val;
t[u].Min[0] = min(t[ls].Min[0], t[ls].sum + t[u].val + t[rs].Min[0]);
t[u].Min[1] = min(t[rs].Min[1], t[rs].sum + t[u].val + t[ls].Min[1]);
t[u].Max[0] = max(t[ls].Max[0], t[ls].sum + t[u].val + t[rs].Max[0]);
t[u].Max[1] = max(t[rs].Max[1], t[rs].sum + t[u].val + t[ls].Max[1]);
}
}CT; int main() {
while (scanf("%d", &n) != EOF) {
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
res = -1e18;
CT.init();
CT.build(n, a);
CT.DFS(CT.root);
printf("%lld\n", res);
}
return 0;
}

J. Distance on the tree

K. MORE XOR

M. Subsequence

题意:

给出串\(S\),以及若干串\(T_i\),每次询问\(T_i\)是否是\(S\)的一个子序列。

思路:

建出序列自动机,暴力跑即可。

时间复杂度:\(\mathcal{O}(26|S| + \sum T_i)\)

代码:

#include <bits/stdc++.h>
using namespace std; #define N 100010
int n, m, q;
char s[N], t[N];
int T[N][30], nx[30]; int main() {
while (scanf("%s", s + 1) != EOF) {
n = strlen(s + 1);
for (int i = 0; i < 30; ++i) nx[i] = n + 1;
for (int i = n; i >= 0; --i) {
for (int j = 0; j < 26; ++j) {
T[i][j] = nx[j];
}
if (i) {
nx[s[i] - 'a'] = i;
}
}
scanf("%d", &q);
while (q--) {
scanf("%s", t + 1);
m = strlen(t + 1);
int it = 0;
for (int i = 1; i <= m; ++i) {
it = T[it][t[i] - 'a'];
if (it == n + 1) break;
}
puts(it == n + 1 ? "NO" : "YES");
}
}
return 0;
}

The Preliminary Contest for ICPC China Nanchang National Invitational的更多相关文章

  1. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  2. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  3. The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题目大意:一个区间的值等于该区间的和乘以区间的最小值.给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大 ...

  4. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  6. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  7. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  8. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

  9. 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛

    Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...

随机推荐

  1. (转)高效线程池之无锁化实现(Linux C)

    本文链接:https://blog.csdn.net/xhjcehust/article/details/45844901 笔者之前照着通用写法练手写过一个小的线程池版本,最近几天复习了一下,发现大多 ...

  2. 在Windows上安装Redis

    微软官网源码 https://github.com/MicrosoftArchive/redis 这里介绍安装Signed binaries版本 使用Chocolatey(Windows包管理工具)安 ...

  3. php权限管理

    首先权限管理肯定是需要登陆的,这里就简单的写一个登陆页面. 简单的登陆页面login.php <h1>登录页面</h1> <form action="login ...

  4. STM8 工程模版

    在st官网下载STM8固件库 拷贝固件库到工程目录下 再创建两个目录 user:存放用户文件.自己编写的源文件 project:存放工程文件 拷贝stm8s_conf.h到user目录下 AIR 创建 ...

  5. iOS 内存管理的一点小问题

    现在大家的项目应该基本都是ARC了,如果还是MRC的话,赶紧转换到ARC吧!最近被临时拉过去开发iPad,由于项目原因,还是使用的MRC.今天在调部分界面的时候,发现一段代码,我怎么看都怎么觉得怪怪的 ...

  6. ABAP Code Inspector那些隐藏的功能,您都知道吗?

    最近有粉丝在后台给我留言,说新知识太多,"学不动了".所谓温故而知新,今天我们就来重温下ABAP里的Code Inspector的用法. 2015年6月,我在SAP社区上写了一篇博 ...

  7. awk 表达式

    awk动作表达式中的算数运算符 awk动作表达式中的算数运算符 案例演示 使用awk计算/etc/services中的空白行数 awk 'BEGIN{sum=0}/^$/{++sum}END{prin ...

  8. Vue 案例 列表动画实例

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. JAVA笔记整理(一),JAVA介绍

    JAVA语言的版本: J2SE(Java2 Platform Standard Edition,java平台标准版),后更名为:JAVA SE J2EE(Java 2 Platform,Enterpr ...

  10. Django组件之modelform

    Django的model form组件 这是一个神奇的组件,通过名字我们可以看出来,这个组件的功能就是把model和form组合起来,先来一个简单的例子来看一下这个东西怎么用:比如我们的数据库中有这样 ...